4,445 research outputs found
A Study on Radiant Heat Application to the Curing Process for Improvement of Free-form Concrete Panel Productivity
As free-form panel production takes a long time, it extends the construction period and increases construction expenses. This study suggests a method to apply radiant heat to concrete for the purpose of shortening the curing and removal process in free-form panel production. The optimal temperature and time for removal are determined based on the results of constant temperature/humidity curing experiments and quartz tube heater curing experiments. Through an experiment in various time settings, the general time of FCP (Free-form Concrete Panel) production is measured to examine whether the productivity is enhanced. It is expected that findings of this study contribute to shortening the construction period and reducing construction expenses as well as future studies on the FCP manufacturing equipment
High-Performance PVC Gel for Adaptive Micro-Lenses with Variable Focal Length.
This paper presents a bio-inspired adaptive micro-lens with electrically tunable focus made of non-ionic high-molecular-weight polyvinyl chloride (PVC) gel. The optical device mimics the design of the crystalline lens and ciliary muscle of the human eye. It consists of a plano-convex PVC gel micro-lens on Indium Tin Oxide (ITO) glass, confined with an annular electrode operating as an artificial ciliary muscle. Upon electrical activation, the electroactive adhesive force of the PVC gel is exerted on the annular anode electrode, which reduces the sagittal height of the plano-convex PVC gel lens, resulting in focal length variation of the micro-lens. The focal length increases from 3.8 mm to 22.3 mm as the applied field is varied from 200 V/mm to 800 V/mm, comparable to that of the human lens. The device combines excellent optical characteristics with structural simplicity, fast response speed, silent operation, and low power consumption. The results show the PVC gel micro-lens is expected to open up new perspectives on practical tunable optics
A Study on the Lateral Load Capacity of a Novel Hybrid Monopile via a Centrifuge Model Test
publishedVersio
Electric-current-driven vortex-core reversal in soft magnetic nanodots
The authors report on electric-current-driven vortex-core (VC) reversal (switching) and the accompanying spin-wave emission, driven by spin-polarized ac currents of different amplitudes and frequencies, investigated by micromagnetic calculations of the dynamic evolution of a magnetic vortex in Permalloy nanodots. The magnetization orientation of the VC is effectively switchable between its upward and downward bistates and controllable by applying current above its threshold density, but with sufficiently small magnitude at frequencies close to the vortex eigenfrequency. This VC reversal phenomenon occurs through the creation of a vortex-antivortex pair and the subsequent annihilation of the initial vortex and the created antivortex, when the velocity of the initial VC reaches its critical value of approximately 340 +/- 20 m/s for the given material and geometry. In the course of these serial processes and immediately after VC switching, strong spin waves are emitted. These results provide physical insights into how and when current-driven VC switching takes place, thereby offering a means to manipulate bistate VC orientations.open554
Improved Sugar Production by Optimizing Planetary Mill Pretreatment and Enzyme Hydrolysis Process
This paper describes an optimization of planetary mill pretreatment and saccharification processes for improving biosugar production. Pitch pine (Pinus rigida) wood sawdust waste was used as biomass feedstock and the process parameters optimized in this study were the buffering media, the milling time, the enzyme quantity, and the incubation time. Glucose yields were improved when acetate buffer was used rather than citrate buffer. Initially, with each process variable tests, the optimal values were 100 minutes of milling, an enzyme concentration of 16 FPU/g-biomass, and a 12-hour enzymatic hydrolysis. Typically, interactions between these experimental conditions and their effects on glucose production were next investigated using RSM. Glucose yields from the Pinus rigida waste exceeded 80% with several of the conditions tested, demonstrating that milling can be used to obtain high levels of glucose bioconversion from woody biomass for biorefinery purposesopen
Hybrid compression of hyperspectral images based on PCA with pre-encoding discriminant information
It has been shown that image compression based on principal component analysis (PCA) provides good compression efficiency for hyperspectral images. However, PCA might fail to capture all the discriminant information of hyperspectral images, since features that are important for classification tasks may not be high in signal energy. To deal with this problem, we propose a hybrid compression method for hyperspectral images with pre-encoding discriminant information. A feature extraction method is first applied to the original images, producing a set of feature vectors that are used to generate feature images and then residual images by subtracting the feature-reconstructed images from the original ones. Both feature images and residual images are compressed and transmitted. Experiments on data from the Airborne Visible/Infrared Imaging Spectrometer sensor indicate that the proposed method provides better compression efficiency with improved classification accuracy than conventional compression methods
Oppositely rotating eigenmodes of spin-polarized current-driven vortex gyrotropic motions in elliptical nanodots
The authors found that there exist two different rotational eigenmodes of oppositely rotating sense in spin-polarized current-driven vortex gyrotropic motions in soft magnetic elliptical nanodots. Simple mathematical expressions were analytically calculated by adopting vortex-core (VC)-rotation-sense- dependent dynamic susceptibility tensors based on the linearized Thiele equation [Phys. Rev. Lett. 30, 230 (1973)]. The numerical calculations of those analytical expressions were confirmed by micromagnetic simulations, revealing that linear-regime steady-state VC motions driven by any polarized oscillating currents can be interpreted simply by the superposition of the clockwise and counterclockwise rotational eigenmodes. The shape of the orbital trajectories of the two eigenmodes is determined only by the lateral dimension of elliptical dots. Additionally, the orbital radii and phases of the two eigenmodes' VC motions were found to markedly vary with the frequency of applied currents, particularly across the vortex eigenfrequency and according to the vortex polarization, which results in overall VC motions driven by any polarized oscillating currents.open8
- …