10,984 research outputs found

    Gas side heat transfer: 2-D flow

    Get PDF
    Significant progress was made in advancing the idea of establishing a unified approach for predicting airfoil heat transfer for a wide range of operating conditions and geometries. Preliminary results are encouraging and further mixing length (ml) turbulence modeling ideas will be explored, concentrating on transition behavior. The capability of available modeling techniques to predict airfoil surface heat transfer distributions in a two-dimensional flow field was assessed, experimental data as required for model verification were acquired, and improvements in the analytic models was made and verified

    An Accounting of the Sources of Steller Sea Lion, Eumetopias jubatus, Mortality

    Get PDF
    During 1991–2000, the west-are additional mortalities that fueled the ern stock of Steller sea lions, Eumetopias decline. We tabulated the levels of reported jubatus, declined at 5.03% (SE = 0.25%) anthropogenic sources of mortality (sub- per year, statistically significant rates (P 8.2% partition the various sources of “additional” per year). Using a published correction mortalities as anthropogenic and as addifactor, we estimated the total non-pup pop-tional mortality including some predation. ulation size in Alaska of the western stock We classified 436 anthropogenic mortalities of Steller sea lions to be about 33,000 ani-and 769 anthropogenic plus some predation mals. Based on a published life table and mortalities as “mortality above replace-the current rate of decline, we estimate that ment”; this accounted for 26% and 46% of the total number of mortalities of non-pup the estimated total level of “mortality above Steller sea lions during 1991–2000 was replacement”, respectively. The remaining about 6,383 animals; of those, 4,718 (74%) mortality (74% and 54%, respectively) was are mortalities that would have occurred if not attributed to a specific cause and may be the population were stable, and 1,666 (26%) the result of nutritional stress

    Dynamical evolution of unstable self-gravitating scalar solitons

    Full text link
    Recently, static and spherically symmetric configurations of globally regular self-gravitating scalar solitons were found. These configurations are unstable with respect to radial linear perturbations. In this paper we study the dynamical evolution of such configurations and show that, depending on the sign of the initial perturbation, the solitons either collapse to a Schwarzschild black hole or else ``explode'' into an outward moving domain wall.Comment: 11 pages, 16 figures, submitted to Phys. Rev.

    Uniqueness and Non-uniqueness in the Einstein Constraints

    Get PDF
    The conformal thin sandwich (CTS) equations are a set of four of the Einstein equations, which generalize the Laplace-Poisson equation of Newton's theory. We examine numerically solutions of the CTS equations describing perturbed Minkowski space, and find only one solution. However, we find {\em two} distinct solutions, one even containing a black hole, when the lapse is determined by a fifth elliptic equation through specification of the mean curvature. While the relationship of the two systems and their solutions is a fundamental property of general relativity, this fairly simple example of an elliptic system with non-unique solutions is also of broader interest.Comment: 4 pages, 4 figures; abstract and introduction rewritte

    Decoherence induced CPT violation and entangled neutral mesons

    Get PDF
    We discuss two classes of semi-microscopic theoretical models of stochastic space-time foam in quantum gravity and the associated effects on entangled states of neutral mesons, signalling an intrinsic breakdown of CPT invariance. One class of models deals with a specific model of foam, initially constructed in the context of non-critical (Liouville) string theory, but viewed here in the more general context of effective quantum-gravity models. The relevant Hamiltonian perturbation, describing the interaction of the meson with the foam medium, consists of off-diagonal stochastic metric fluctuations, connecting distinct mass eigenstates (or the appropriate generalisation thereof in the case of K-mesons), and it is proportional to the relevant momentum transfer (along the direction of motion of the meson pair). There are two kinds of CPT-violating effects in this case, which can be experimentally disentangled: one (termed ``omega-effect'') is associated with the failure of the indistinguishability between the neutral meson and its antiparticle, and affects certain symmetry properties of the initial state of the two-meson system; the second effect is generated by the time evolution of the system in the medium of the space-time foam, and can result in time-dependent contributions of the $omega-effect type in the time profile of the two meson state. Estimates of both effects are given, which show that, at least in certain models, such effects are not far from the sensitivity of experimental facilities available currently or in the near future. The other class of quantum gravity models involves a medium of gravitational fluctuations which behaves like a ``thermal bath''. In this model both of the above-mentioned intrinsic CPT violation effects are not valid.Comment: 16 pages revtex, no figure

    An axisymmetric generalized harmonic evolution code

    Get PDF
    We describe the first axisymmetric numerical code based on the generalized harmonic formulation of the Einstein equations which is regular at the axis. We test the code by investigating gravitational collapse of distributions of complex scalar field in a Kaluza-Klein spacetime. One of the key issues of the harmonic formulation is the choice of the gauge source functions, and we conclude that a damped wave gauge is remarkably robust in this case. Our preliminary study indicates that evolution of regular initial data leads to formation both of black holes with spherical and cylindrical horizon topologies. Intriguingly, we find evidence that near threshold for black hole formation the number of outcomes proliferates. Specifically, the collapsing matter splits into individual pulses, two of which travel in the opposite directions along the compact dimension and one which is ejected radially from the axis. Depending on the initial conditions, a curvature singularity develops inside the pulses.Comment: 21 page, 18 figures. v2: minor corrections, added references, new Fig. 9; journal version

    Action and Energy of the Gravitational Field

    Get PDF
    We present a detailed examination of the variational principle for metric general relativity as applied to a ``quasilocal'' spacetime region \M (that is, a region that is both spatially and temporally bounded). Our analysis relies on the Hamiltonian formulation of general relativity, and thereby assumes a foliation of \M into spacelike hypersurfaces Σ\Sigma. We allow for near complete generality in the choice of foliation. Using a field--theoretic generalization of Hamilton--Jacobi theory, we define the quasilocal stress-energy-momentum of the gravitational field by varying the action with respect to the metric on the boundary \partial\M. The gravitational stress-energy-momentum is defined for a two--surface BB spanned by a spacelike hypersurface in spacetime. We examine the behavior of the gravitational stress-energy-momentum under boosts of the spanning hypersurface. The boost relations are derived from the geometrical and invariance properties of the gravitational action and Hamiltonian. Finally, we present several new examples of quasilocal energy--momentum, including a novel discussion of quasilocal energy--momentum in the large-sphere limit towards spatial infinity.Comment: To be published in Annals of Physics. This final version includes two new sections, one giving examples of quasilocal energy and the other containing a discussion of energy at spatial infinity. References have been added to papers by Bose and Dadhich, Anco and Tun

    Canonical Quasilocal Energy and Small Spheres

    Get PDF
    Consider the definition E of quasilocal energy stemming from the Hamilton-Jacobi method as applied to the canonical form of the gravitational action. We examine E in the standard "small-sphere limit," first considered by Horowitz and Schmidt in their examination of Hawking's quasilocal mass. By the term "small sphere" we mean a cut S(r), level in an affine radius r, of the lightcone belonging to a generic spacetime point. As a power series in r, we compute the energy E of the gravitational and matter fields on a spacelike hypersurface spanning S(r). Much of our analysis concerns conceptual and technical issues associated with assigning the zero-point of the energy. For the small-sphere limit, we argue that the correct zero-point is obtained via a "lightcone reference," which stems from a certain isometric embedding of S(r) into a genuine lightcone of Minkowski spacetime. Choosing this zero-point, we find agreement with Hawking's quasilocal mass expression, up to and including the first non-trivial order in the affine radius. The vacuum limit relates the quasilocal energy directly to the Bel-Robinson tensor.Comment: revtex, 22 p, uses amssymb option (can be removed

    Conformal ``thin sandwich'' data for the initial-value problem of general relativity

    Full text link
    The initial-value problem is posed by giving a conformal three-metric on each of two nearby spacelike hypersurfaces, their proper-time separation up to a multiplier to be determined, and the mean (extrinsic) curvature of one slice. The resulting equations have the {\it same} elliptic form as does the one-hypersurface formulation. The metrical roots of this form are revealed by a conformal ``thin sandwich'' viewpoint coupled with the transformation properties of the lapse function.Comment: 7 pages, RevTe

    The Holographic Interpretation of Hawking Radiation

    Full text link
    Holography gives us a tool to view the Hawking effect from a new, classical perspective. In the context of Randall-Sundrum braneworld models, we show that the basic features of four-dimensional evaporating solutions are nicely translated into classical five-dimensional language. This includes the dual bulk description of particles tunneling through the horizon.Comment: 10 pages, 1 figure, Honorable Mention in the Gravity Research Foundation Essay Competition 200
    corecore