60 research outputs found

    Chronic eccentric exercise and antioxidant supplementation: effects on lipid profile and insulin sensitivity

    Get PDF
    Eccentric exercise has been shown to exert beneficial effects in both lipid profile and insulin sensitivity. Antioxidant supplementation during chronic exercise is controversial as it may prevent the physiological training-induced adaptations. The aim of this study was to investigate: 1) the minimum duration of the eccentric exercise training required before changes on metabolic parameters are observed and 2) whether antioxidant supplementation during training would interfere with these adaptations. Sixteen young healthy men were randomized into the Vit group (1 g of vitamin C and 400 IU vitamin E daily) and the placebo (PL) group. Subjects received the supplementation for 9 weeks. During weeks 5-9 all participants went through an eccentric exercise training protocol consisting of two exercise sessions (5 sets of 15 eccentric maximal voluntary contractions) per week. Plasma triglycerides (TG), total cholesterol (TC), high density lipoprotein (HDL), low density lipoprotein (LDL), apolipoproteins (Apo A1, Apo B and Lpa) and insulin sensitivity (HOMA) were assessed before the supplementation (week 0), at weeks 5, 6, 7, 8 and 9. TG, TC and LDL were significantly lower compared to pre supplementation at both weeks 8 and 9 (P<0.05) in both groups. HDL was significantly elevated after 4 weeks of training (p < 0.005) in both groups. There was no effect of the antioxidant supplementation in any of the variables. There was no effect of either the training or the supplementation protocol in apolipoproteins levels and insulin sensitivity. A minimum duration of 3 weeks of eccentric exercise training is required before beneficial effects in lipid profile can be observed in healthy young men. Concomitant antioxidant supplementation does not interfere with the training-induced adaptations

    Peripheral Mononuclear Cell Resistin mRNA Expression Is Increased in Type 2 Diabetic Women

    Get PDF
    Resistin has been shown to cause insulin resistance and to impair glucose tolerance in rodents, but in humans its physiological role still remains elusive. The aim of this study was to examine whether resistin mRNA expression in human peripheral mononuclear cells (PBMCs) and its corresponding plasma levels are altered in type 2 diabetes. Resistin mRNA levels were easily detectable in human PBMC, and found to be higher in DM2 compared to healthy women (P = .05). Similarly, mononuclear mRNA levels of the proinflammatory cytokines IL-1β, TNF-α, and IL-6 were all significantly higher in DM2 compared to control women (P < .001). The corresponding plasma resistin levels were slightly, but not significantly, increased in DM2 women (P = .051), and overall, they correlated significantly with BMI (r = 0.406, P = .010) and waist circumference (r = 0.516, P = .003), but not with fasting insulin levels or HOMA-IR. Resistin mRNA expression is increased in PBMC from DM2 women, together with increased expression of the inflammatory cytokines IL-1β, TNF-α, and IL-6, independent of obesity. These results suggest that resistin and cytokines might contribute to the low-grade inflammation and the increased atherogenic risk observed in these patients

    The effects of vitamin C and E on exercise-induced physiological adaptations: a systematic review and Meta-analysis of randomized controlled trials

    Get PDF
    We conducted a systematic review and meta-analysis of randomized controlled trials examining the effect of vitamin C and/or E on exercise-induced training adaptations. Medline, Embase and SPORTDiscus databases were searched for articles from inception until June 2019. Inclusion criteria was studies in adult humans where vitamin C and/or E had to be consumed alongside a supervised exercise training program of ≥4 weeks. Nine trials were included in the analysis of aerobic exercise adaptations and nine for resistance training (RT) adaptations. Vitamin C and/or E did not attenuate aerobic exercise induced improvements in maximal aerobic capacity (V̇ O2max) (SMD −0.14, 95% CI: −0.43 to 0.15, P = 0.35) or endurance performance (SMD −0.01, 95% CI: −0.38 to 0.36, P = 0.97). There were also no effects of these supplements on lean mass and muscle strength following RT (SMD −0.07, 95% CI: −0.36 to 0.23, P = 0.67) and (SMD −0.15, 95% CI: −0.16 to 0.46, P = 0.35), respectively. There was also no influence of age on any of these outcomes (P > 0.05). These findings suggest that vitamin C and/or E does not inhibit exercise-induced changes in physiological function. Studies with larger sample sizes and adequate power are still required

    The 4C5 Cell-Impermeable Anti-HSP90 Antibody with Anti-Cancer Activity, Is Composed of a Single Light Chain Dimer

    Get PDF
    MAb 4C5 is a cell impermeable, anti-HSP90 murine monoclonal antibody, originally produced using hybridoma technology. We have previously shown that mAb 4C5 specifically recognizes both the α- and to a lesser extent the β-isoform of HSP90. Additionally, in vitro and in vivo studies revealed that by selectively inhibiting the function of cell-surface HSP90, mAb 4C5 significantly impairs cancer cell invasion and metastasis. Here we describe the reconstitution of mAb 4C5 into a mouse-human chimera. More importantly we report that mAb 4C5 and consequently its chimeric counterpart are completely devoid of heavy chain and consist only of a functional kappa light chain dimer. The chimeric antibody is shown to retain the original antibody's specificity and functional properties. Thus it is capable of inhibiting the function of surface HSP90, leading to reduced cancer cell invasion in vitro. Finally, we present in vivo evidence showing that the chimeric 4C5 significantly inhibits the metastatic deposit formation of MDA-MB-453 cells into the lungs of SCID mice. These data suggest that a chimeric kappa light chain antibody could be potentially used as an anti-cancer agent, thereby introducing a novel type of antibody fragment, with reduced possible adverse immunogenic effects, into cancer therapeutics

    Protein Signature of Lung Cancer Tissues

    Get PDF
    Lung cancer remains the most common cause of cancer-related mortality. We applied a highly multiplexed proteomic technology (SOMAscan) to compare protein expression signatures of non small-cell lung cancer (NSCLC) tissues with healthy adjacent and distant tissues from surgical resections. In this first report of SOMAscan applied to tissues, we highlight 36 proteins that exhibit the largest expression differences between matched tumor and non-tumor tissues. The concentrations of twenty proteins increased and sixteen decreased in tumor tissue, thirteen of which are novel for NSCLC. NSCLC tissue biomarkers identified here overlap with a core set identified in a large serum-based NSCLC study with SOMAscan. We show that large-scale comparative analysis of protein expression can be used to develop novel histochemical probes. As expected, relative differences in protein expression are greater in tissues than in serum. The combined results from tissue and serum present the most extensive view to date of the complex changes in NSCLC protein expression and provide important implications for diagnosis and treatment

    The effects of a single bout of exercise on resting energy expenditure and respiratory exchange ratio.

    Get PDF
    We investigated the effects of a single bout of aerobic and resistance exercise of similar relative intensity and duration on resting energy expenditure (REE) and substrate utilisation. Ten young healthy males volunteered [age 22 (1.8) years, weight 76 (7.9) kg, height 176 (4.1) cm, percentage body fat 10.5 (4.0)%; mean (SEM)]. They randomly underwent three conditions in which they either lifted weights for 60 min at 70-75% of 1-RM (WL), ran for 60 min at 70-75% of maximal oxygen intake (R) or did not exercise (C). REE and substrate utilisation, determined via respiratory exchange ratio ( R), were measured prior to exercise, and 10, 24, 48 and 72 h post-exercise. It was revealed that REE was significantly elevated ( P<0.05) 10 and 24 h after the end of WL [2,124 (78) and 2,081 (76) kcal, respectively] compared to pre-exercise [1,972 (82) kcal]. REE was also significantly increased ( P<0.05) 10 and 48 h after the completion of R [2,150 (73) and 1,995 (74) kcal, respectively] compared to pre-exercise data [1,862 (70) kcal]. R was lower 10 and 24 h following either WL or R [0.813 (0.043); 0.843 (0.040) and 0.818 (0.021); 0.832 (0.021), respectively] compared to baseline measurements [0.870 (0.025) and 0.876 (0.04), respectively]. Creatine kinase was significantly elevated ( P<0.05) 24 h after both WL and R, whereas delayed onset muscle soreness became significantly elevated ( P<0.05) 24 h after only WL. There were no significant changes for any treatment in thyroid hormones (T(3) and T(4)). These results suggest that a single bout of either WL or R exercise, characterised by the same relative intensity and duration, increase REE and fat oxidation for at least 24 h post-exercise

    Corporate credit risk counter-cyclical interdependence: A systematic analysis of cross-border and cross-sector correlation dynamics

    No full text
    Supplementary material: Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.ejor.2022.04.017. Appendix B. Supplementary materials: Download Acrobat PDF file (https://ars.els-cdn.com/content/image/1-s2.0-S0377221722003150-mmc1.pdf - 1MB) Supplementary Data S1. Supplementary Raw Research Data. This is open data under the CC BY license https://creativecommons.org/licenses/by/4.0
    corecore