6 research outputs found

    A modified Delphi approach to develop a trial protocol for antibiotic de-escalation in patients with suspected sepsis

    Get PDF
    Background: Early administration of antibiotics in sepsis is associated with improved patient outcomes, but safe and generalizable approaches to de-escalate or discontinue antibiotics after suspected sepsis events are unknown. Methods: We used a modified Delphi approach to identify safety criteria for an opt-out protocol to guide de-escalation or discontinuation of antibiotic therapy after 72 hours in non-ICU patients with suspected sepsis. An expert panel with expertise in antimicrobial stewardship and hospital epidemiology rated 48 unique criteria across 3 electronic survey rating tools. Criteria were rated primarily based on their impact on patient safety and feasibility for extraction from electronic health record review. The 48 unique criteria were rated by anonymous electronic survey tools, and the results were fed back to the expert panel participants. Consensus was achieved to either retain or remove each criterion. Results: After 3 rounds, 22 unique criteria remained as part of the opt-out safety checklist. These criteria included high-risk comorbidities, signs of severe illness, lack of cultures during sepsis work-up or antibiotic use prior to blood cultures, or ongoing signs and symptoms of infection. Conclusions: The modified Delphi approach is a useful method to achieve expert-level consensus in the absence of evidence suifficient to provide validated guidance. The Delphi approach allowed for flexibility in development of an opt-out trial protocol for sepsis antibiotic de-escalation. The utility of this protocol should be evaluated in a randomized controlled trial

    International Veterinary Epilepsy Task Force consensus proposal: Medical treatment of canine epilepsy in Europe

    Get PDF
    In Europe, the number of antiepileptic drugs (AEDs) licensed for dogs has grown considerably over the last years. Nevertheless, the same questions remain, which include, 1) when to start treatment, 2) which drug is best used initially, 3) which adjunctive AED can be advised if treatment with the initial drug is unsatisfactory, and 4) when treatment changes should be considered. In this consensus proposal, an overview is given on the aim of AED treatment, when to start long-term treatment in canine epilepsy and which veterinary AEDs are currently in use for dogs. The consensus proposal for drug treatment protocols, 1) is based on current published evidence-based literature, 2) considers the current legal framework of the cascade regulation for the prescription of veterinary drugs in Europe, and 3) reflects the authors’ experience. With this paper it is aimed to provide a consensus for the management of canine idiopathic epilepsy. Furthermore, for the management of structural epilepsy AEDs are inevitable in addition to treating the underlying cause, if possible

    Cellular Arrays for Large-Scale Analysis of Transcription Factor Activity

    Get PDF
    Identifying molecular mechanisms or therapeutic targets is typically based on large-scale cellular analysis that measures the abundance of mRNA or protein; however, abundance does not necessarily correlate with activity. We report a method for direct large-scale quantification of active pathways that employs a cellular array with parallel gene delivery of constructs that report pathway activity. The reporter constructs encode luciferase, whose expression is influenced by binding of transcription factors (TFs), which are the downstream targets of signaling pathways. Luciferase levels are quantified by bioluminescence imaging (BLI), which allows for rapid, noninvasive measurements. Activity profiles by BLI of 32 TFs were robust, consistent, and reproducible, and correlated with standard cell lysis techniques. The array identified five TFs with differential activity during phorbol-12-myristate-13-acetate (PMA)-induced differentiation of breast cancer cells. A system for rapid, large-scale, BLI quantification of pathway activity provides an enabling technology for mechanistic studies of cellular responses and processes
    corecore