121 research outputs found

    Contribution of snowfall from diverse synoptic conditions in the Catskill/Delaware Watershed of New York State

    Get PDF
    Snowfall in the six basins of the Catskill/Delaware Watershed in south‐central New York State historically contributes roughly 20–30% of the water resources derived from the watershed for use in the New York City water supply. The watershed regularly experiences snowfall from three distinctive weather patterns: coastal mid‐latitude cyclones, overrunning systems, and lake‐effect or Great Lakes enhanced storms. Using synoptic weather classification techniques, these distinct regional atmospheric patterns impacting the watershed are isolated and analysed in conjunction with daily snowfall observations from 1960 to 2009 to allow the influence of each synoptic weather pattern on snowfall to be evaluated independently. Results indicate that snowfall‐producing events occur on average approximately 63 days/year, or once every 4 days during the October–May season, leading to an average of 213 cm/year of snowfall within the watershed. Snowfall from Great Lakes enhanced storms and overrunning systems contribute nearly equally to seasonal totals, representing 38 and 39%, respectively. Coastal mid‐latitude cyclones, while producing the highest amount of snowfall per event on average, contribute only 16% to the watershed average total snowfall. Predicted climate change is expected to impact snowfall differently depending on the specific atmospheric pattern producing the snow. As such, quantifying the contribution of snowfall to the watershed by synoptic pattern can inform future water management and reservoir operation practices for the New York City Water Supply Management System

    Spatial variability of precipitation regimes over Turkey

    Get PDF
    Turkish annual precipitation regimes are analysed to provide large-scale perspective and redefine precipitation regions. Monthly total precipitation data are employed for 107 stations (1963–2002). Precipitation regime shape (seasonality) and magnitude (size) are classified using a novel multivariate methodology. Six shape and five magnitude classes are identified, which exhibit clear spatial structure. A composite (shape and magnitude) regime classification reveals dominant controls on spatial variability of precipitation. Intra-annual timing and magnitude of precipitation is highly variable due to seasonal shifts in Polar and Subtropical zones and physiographic factors. Nonetheless, the classification methodology is shown to be a powerful tool that identifies physically-interpretable precipitation regions: (1) coastal regimes for Marmara, coastal Aegean, Mediterranean and Black Sea; (2) transitional regimes in continental Aegean and Southeast Anatolia; and (3) inland regimes across central and Eastern Anatolia. This research has practical implications for understanding water resources, which are under ever growing pressure in Turkey

    Heritage Tourism in Taiwan's Desinicized Nationalism

    Get PDF
    En las sociedades posmodernas, el consumo turĂ­stico de los sĂ­mbolos de la identidad contribuye a la formaciĂłn de las identidades nacionales. El propĂłsito de este estudio fue examinar las perspectivas de residentes y turistas sobre los significados asociados a y los impactos causados por el desarrollo del patrimonio turĂ­stico. Los datos recogidos mediante entrevistas estructuradas y observaciones de campo en Lu-Kang (Taiwan) pusieron de manifiesto que el patrimonio local es visto como significativo no sĂłlo por los residentes locales y los agentes culturales, sino tambiĂ©n por los visitantes nacionales. El desarrollo del turismo ha traĂ­do la revitalizaciĂłn econĂłmica y cultural, pero tambiĂ©n hacinamiento, comercializaciĂłn cultural y contaminaciĂłn ambiental. Lu-Kang, es, pues, un espacio para la difusiĂłn de los sĂ­mbolos existentes de una identidad nacional; con sĂ­mbolos que acentĂșan la historia de Taiwan de la colonizaciĂłn y la diversidad Ă©tnica, y que sitĂșan el origen de la naciĂłn con la llegada de migrantes procedentes del continente.In postmodern societies, the touristic consumption of symbols of identity contributes to the formation of national identities. The purpose of this study was to examine residents’ and tourists’ perspectives on the meanings attached to and impacts caused by heritage tourism development. Data collected through structured interviews and field observations in Lu-Kang, Taiwan revealed that the local heritage is seen as personally meaningful not only by local residents and culture brokers but also by domestic visitors. Tourism development is reported to bring economic and cultural revitalization but is also blamed for crowding, commercialization and environmental pollution. Lu-Kang, is thus a space for the dissemination of extant symbols of a Desinicized national identity; symbols that accentuate Taiwan’s history of colonization and ethnic diversity, and that situate the nation’s origin with the arrival of migrants from the Mainland

    An assessment of the Jenkinson and Collison synoptic classification to a continental mid-latitude location

    Get PDF
    A weather-type catalogue based on the Jenkinson and Collison method was developed for an area in south-west Russia for the period 1961--2010. Gridded sea level pressure data was obtained from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis. The resulting catalogue was analysed for frequency of individual types and groups of weather types to characterise long-term atmospheric circulation in this region. Overall, the most frequent type is anticyclonic (A) (23.3 {%}) followed by cyclonic (C) (11.9 {%}); however, there are some key seasonal patterns with westerly circulation being significantly more common in winter than summer. The utility of this synoptic classification is evaluated by modelling daily rainfall amounts. A low level of error is found using a simple model based on the prevailing weather type. Finally, characteristics of the circulation classification are compared to those for the original JC British Isles catalogue and a much more equal distribution of flow types is seen in the former classification

    The 1958–2009 Greenland ice sheet surface melt and the mid-tropospheric atmospheric circulation

    Get PDF
    peer reviewedaudience: researcherIn order to assess the impact of the mid-tropospheric circulation over the Greenland ice sheet (GrIS) on surface melt, as simulated by the regional climate model MAR, an automatic Circulation type classification (CTC) based on 500 hPa geopotential height from reanalyses is developed. General circulation correlates significantly with the surface melt anomalies for the summers in the period 1958–2009. The record surface melt events observed during the summers of 2007–2009 are linked to the exceptional persistence of atmospheric circulations favouring warm air advection. The CTC emphasizes that summer 500 hPa circulation patterns have changed since the beginning of the 2000s; this process is partly responsible for the recent warming observed over the GrIS

    Flood Risk Assessment for Urban Drainage System in a Changing Climate Using Artificial Neural Network

    Get PDF
    Changes in rainfall patterns due to climate change are expected to have negative impact on urban drainage systems, causing increase in flow volumes entering the system. In this paper, two emission scenarios for greenhouse concentration have been used, the high (A1FI) and the low (B1). Each scenario was selected for purpose of assessing the impacts on the drainage system. An artificial neural network downscaling technique was used to obtain local-scale future rainfall from three coarse-scale GCMs. An impact assessment was then carried out using the projected local rainfall and a risk assessment methodology to understand and quantify the potential hazard from surface flooding. The case study is a selected urban drainage catchment in northwestern England. The results show that there will be potential increase in the spilling volume from manholes and surcharge in sewers, which would cause a significant number of properties to be affected by flooding

    Combining dispersion modelling with synoptic patterns to understand the wind-borne transport into the UK of the bluetongue disease vector

    Get PDF
    Bluetongue, an economically important animal disease, can be spread over long distances by carriage of insect vectors (Culicoides biting midges) on the wind. The weather conditions which influence the midge’s flight are controlled by synoptic scale atmospheric circulations. A method is proposed that links wind-borne dispersion of the insects to synoptic circulation through the use of a dispersion model in combination with principal component analysis (PCA) and cluster analysis. We illustrate how to identify the main synoptic situations present during times of midge incursions into the UK from the European continent. A PCA was conducted on high-pass-filtered mean sea-level pressure data for a domain centred over north-west Europe from 2005 to 2007. A clustering algorithm applied to the PCA scores indicated the data should be divided into five classes for which averages were calculated, providing a classification of the main synoptic types present. Midge incursion events were found to mainly occur in two synoptic categories; 64.8% were associated with a pattern displaying a pressure gradient over the North Atlantic leading to moderate south-westerly flow over the UK and 17.9% of the events occurred when high pressure dominated the region leading to south-easterly or easterly winds. The winds indicated by the pressure maps generally compared well against observations from a surface station and analysis charts. This technique could be used to assess frequency and timings of incursions of virus into new areas on seasonal and decadal timescales, currently not possible with other dispersion or biological modelling methods

    Persistent left superior vena cava: Review of the literature, clinical implications, and relevance of alterations in thoracic central venous anatomy as pertaining to the general principles of central venous access device placement and venography in cancer patients

    Get PDF
    Persistent left superior vena cava (PLSVC) represents the most common congenital venous anomaly of the thoracic systemic venous return, occurring in 0.3% to 0.5% of individuals in the general population, and in up to 12% of individuals with other documented congential heart abnormalities. In this regard, there is very little in the literature that specifically addresses the potential importance of the incidental finding of PLSVC to surgeons, interventional radiologists, and other physicians actively involved in central venous access device placement in cancer patients. In the current review, we have attempted to comprehensively evaluate the available literature regarding PLSVC. Additionally, we have discussed the clinical implications and relevance of such congenital aberrancies, as well as of treatment-induced or disease-induced alterations in the anatomy of the thoracic central venous system, as they pertain to the general principles of successful placement of central venous access devices in cancer patients. Specifically regarding PLSVC, it is critical to recognize its presence during attempted central venous access device placement and to fully characterize the pattern of cardiac venous return (i.e., to the right atrium or to the left atrium) in any patient suspected of PLSVC prior to initiation of use of their central venous access device

    Greenland coastal air temperatures linked to Baffin Bay and Greenland Sea ice conditions during autumn through regional blocking patterns

    Get PDF
    Variations in sea ice freeze onset and regional sea surface temperatures (SST) in Baffin Bay and Greenland Sea are linked to autumn surface air temperatures (SAT) around coastal Greenland through 500 hPa blocking patterns, 1979-2014. We find strong, statistically significant correlations between Baffin Bay freeze onset and SSTs and SATs across the western and southernmost coastal areas, while weaker and fewer significant correlations are found between eastern SATs, SSTs, and freeze periods observed in the neighboring Greenland Sea. Autumn Greenland Blocking Index (GBI) values and the incidence of meridional circulation patterns have increased over the modern sea ice monitoring era. Increased anticyclonic blocking patterns promote poleward transport of warm air from lower latitudes and local warm air advection onshore from ocean-atmosphere sensible heat exchange through ice-free or thin ice-covered seas bordering the coastal stations. Temperature composites by years of extreme late freeze conditions, occurring since 2006 in Baffin Bay, reveal positive monthly SAT departures that often exceed one standard deviation from the 1981-2010 climate norma
    • 

    corecore