434 research outputs found
Representation of tropical deep convection in atmospheric models - Part 1 : Meteorology and comparison with satellite observations
Published under Creative Commons Licence 3.0. Original article can be found at : http://www.atmospheric-chemistry-and-physics.net/ "The author's copyright for this publication is transferred to University of Hertfordshire".Fast convective transport in the tropics can efficiently redistribute water vapour and pollutants up to the upper troposphere. In this study we compare tropical convection characteristics for the year 2005 in a range of atmospheric models, including numerical weather prediction (NWP) models, chemistry transport models (CTMs), and chemistry-climate models (CCMs). The model runs have been performed within the framework of the SCOUT-O3 (Stratospheric-Climate Links with Emphasis on the Upper Troposphere and Lower Stratosphere) project. The characteristics of tropical convection, such as seasonal cycle, land/sea contrast and vertical extent, are analysed using satellite observations as a benchmark for model simulations. The observational datasets used in this work comprise precipitation rates, outgoing longwave radiation, cloud-top pressure, and water vapour from a number of independent sources, including ERA-Interim analyses. Most models are generally able to reproduce the seasonal cycle and strength of precipitation for continental regions but show larger discrepancies with observations for the Maritime Continent region. The frequency distribution of high clouds from models and observations is calculated using highly temporally-resolved (up to 3-hourly) cloud top data. The percentage of clouds above 15 km varies significantly between the models. Vertical profiles of water vapour in the upper troposphere-lower stratosphere (UTLS) show large differences between the models which can only be partly attributed to temperature differences. If a convective plume reaches above the level of zero net radiative heating, which is estimated to be ~15 km in the tropics, the air detrained from it can be transported upwards by radiative heating into the lower stratosphere. In this context, we discuss the role of tropical convection as a precursor for the transport of short-lived species into the lower stratosphere.Peer reviewe
Explicit and Exact Solutions to a Kolmogorov-Petrovskii-Piskunov Equation
Some explicit traveling wave solutions to a Kolmogorov-Petrovskii-Piskunov
equation are presented through two ans\"atze. By a Cole-Hopf transformation,
this Kolmogorov-Petrovskii-Piskunov equation is also written as a bilinear
equation and further two solutions to describe nonlinear interaction of
traveling waves are generated. B\"acklund transformations of the linear form
and some special cases are considered.Comment: 14pages, Latex, to appear in Intern. J. Nonlinear Mechanics, the
original latex file is not complet
A modeling approach shows the effects of different light-dark schemes on the entrainment ability of the suprachiasmatic nucleus
In mammals, an endogenous clock located in the suprachiasmatic nucleus (SCN), synchronizes physiological and biological rhythms to the environmental light–dark cycle. In experiments, most researchers applied rectangular scheme as the external light–dark scheme received by the SCN neuronal oscillators. However, the external light intensity changes gradually throughout the day. Therefore, trapezoidal schemes (twilight) or sinusoidal schemes were also applied. Thus far, the effects of different light–dark schemes on the oscillators of the SCN did not get fully explored. In the present study, we theoretically analyzed how the five common light–dark schemes affect the entrainment ability of the SCN, based on a Poincaré model. We numerically found that when the maximum light intensity, the minimum light intensity, and the total amount of light exposure per cycle were the same, the largest entrainment range was obtained in the oscillators receiving more light in the daytime. However if, under the condition of 12:12-h illumination, the total amount of light exposure per cycle was the same, the maximum light intensity during the day leaded to an increased range of entrainment. Moreover, the entrainment range was reduced when the photoperiod was extended. Note that, increasing the maximum light intensity increased the entrainment ability of all light–dark schemes. Our results exposes the important role of light–dark schemes in the entrainment ability of the SCN network, and provides a potential explanation for the diversity of the entrainment range between diurnal and nocturnal animals. Circadian clocks in health and diseas
Tibetan sheep are better able to cope with low energy intake than Small-tailed Han sheep due to lower maintenance energy requirements and higher nutrient digestibilities
Tibetan sheep are indigenous to the Qinghai-Tibetan Plateau (QTP) and are well-adapted to and even thrive under the harsh alpine conditions. Small-tailed Han sheep were introduced to the plateau because of their high prolificacy and are maintained mainly in feedlots. Because of their different backgrounds, we hypothesised that Tibetan and Small-tailed Han sheep would differ in their utilization of energy intake and predicted that Tibetan sheep would cope better with low energy intake than Small-tailed Han sheep. To test this prediction, we determined nutrient digestibilities, energy requirements for maintenance and blood metabolite and hormone concentrations involved in energy metabolism in these breeds. Sheep of each breed (n = 24 of each, all wethers and 1.5 years of age) were distributed randomly into one of four groups and offered ad libitum diets of different digestible energy (DE) densities: 8.21, 9.33, 10.45 and 11.57 MJ DE/kg Dry matter (DM). Following 42 d of measuring feed intake, a 1-week digestion and metabolism experiment was done. DM intakes did not differ between breeds nor among treatments but, by design, DE intake increased linearly in both breeds as dietary energy level increased (P < 0.001). The average daily gain (ADG) was significantly greater in the Tibetan than Small-tailed Han sheep (P = 0.003) and increased linearly in both breeds (P < 0.001). In addition, from the regression analysis of ADG on DE intake, daily DE maintenance requirements were lower for Tibetan than for Small-tailed Han sheep (0.41 vs 0.50 MJ/BW0.75, P < 0.05). The DE and metabolizable energy (ME) digestibilities were higher in the Tibetan than Small-tailed Han sheep (P < 0.001) and increased linearly as the energy level increased in the diet (P < 0.001). At the lowest energy treatment, Tibetan sheep when compared with Small-tailed Han sheep, had: 1) higher serum glucose and glucagon, but lower insulin concentrations (P < 0.05), which indicated a higher capacity for gluconeogenesis and ability to regulate glucose metabolism; and 2) higher non-esterified fatty acids (NEFA) and lower very low density lipoprotein (VLDL) and triglyceride (TG) concentrations (P < 0.05), which indicated a higher capacity for NEFA oxidation but lower ability for triglyceride (TG) synthesis. We concluded that our prediction was supported as these differences between breeds conferred an advantage for Tibetan over Small-tailed Han sheep to cope better with low energy diets
An effective local routing strategy on the BA network
In this paper, We propose a effective routing strategy on the basis of the
so-called nearest neighbor search strategy by introducing a preferential
delivering exponent alpha. we assume that the handling capacity of one vertex
is proportional to its degree when the degree is smaller than a cut-off value
, and is infinite otherwise. It is found that by tuning the parameter alpha,
the scale-free network capacity measured by the order parameter is considerably
enhanced compared to the normal nearest-neighbor strategy. Traffic dynamics
both near and far away from the critical generating rate R_c are discussed. We
also investigate R_c as functions of m (connectivity density), K (cutoff
value). Due to the low cost of acquiring nearest-neighbor information and the
strongly improved network capacity, our strategy may be useful and reasonable
for the protocol designing of modern communication networks.Comment: 9 pages, 5 figure
Efficient scheme for one-way quantum computing in thermal cavities
We propose a practical scheme for one-way quantum computing based on
efficient generation of 2D cluster state in thermal cavities. We achieve a
controlled-phase gate that is neither sensitive to cavity decay nor to thermal
field by adding a strong classical field to the two-level atoms. We show that a
2D cluster state can be generated directly by making every two atoms collide in
an array of cavities, with numerically calculated parameters and appropriate
operation sequence that can be easily achieved in practical Cavity QED
experiments. Based on a generated cluster state in Box configuration,
we then implement Grover's search algorithm for four database elements in a
very simple way as an example of one-way quantum computing.Comment: 6 pages, 3 figure
Non-Markovian dynamics in a spin star system: The failure of thermalization
In most cases, a small system weakly interacting with a thermal bath will
finally reach the thermal state with the temperature of the bath. We show that
this intuitive picture is not always true by a spin star model where non-Markov
effect predominates in the whole dynamical process. The spin star system
consists a central spin homogeneously interacting with an ensemble of identical
noninteracting spins. We find that the correlation time of the bath is
infinite, which implies that the bath has a perfect memory, and that the
dynamical evolution of the central spin must be non- Markovian. A direct
consequence is that the final state of the central spin is not the thermal
state equilibrium with the bath, but a steady state which depends on its
initial state.Comment: 8 page
Interruption of torus doubling bifurcation and genesis of strange nonchaotic attractors in a quasiperiodically forced map : Mechanisms and their characterizations
A simple quasiperiodically forced one-dimensional cubic map is shown to
exhibit very many types of routes to chaos via strange nonchaotic attractors
(SNAs) with reference to a two-parameter space. The routes include
transitions to chaos via SNAs from both one frequency torus and period doubled
torus. In the former case, we identify the fractalization and type I
intermittency routes. In the latter case, we point out that atleast four
distinct routes through which the truncation of torus doubling bifurcation and
the birth of SNAs take place in this model. In particular, the formation of
SNAs through Heagy-Hammel, fractalization and type--III intermittent mechanisms
are described. In addition, it has been found that in this system there are
some regions in the parameter space where a novel dynamics involving a sudden
expansion of the attractor which tames the growth of period-doubling
bifurcation takes place, giving birth to SNA. The SNAs created through
different mechanisms are characterized by the behaviour of the Lyapunov
exponents and their variance, by the estimation of phase sensitivity exponent
as well as through the distribution of finite-time Lyapunov exponents.Comment: 27 pages, RevTeX 4, 16 EPS figures. Phys. Rev. E (2001) to appea
Leading and higher twists in the proton polarized structure function at large Bjorken x
A phenomenological parameterization of the proton polarized structure
function has been developed for x > 0.02 using deep inelastic data up to ~ 50
(GeV/c)**2 as well as available experimental results on both photo- and
electro-production of proton resonances. According to the new parameterization
the generalized Drell-Hearn-Gerasimov sum rule is predicted to have a
zero-crossing point at Q**2 = 0.16 +/- 0.04 (GeV/c)**2. Then, low-order
polarized Nachtmann moments have been estimated and their Q**2-behavior has
been investigated in terms of leading and higher twists for Q**2 > 1
(GeV/c)**2. The leading twist has been treated at NLO in the strong coupling
constant and the effects of higher orders of the perturbative series have been
estimated using soft-gluon resummation techniques. In case of the first moment
higher-twist effects are found to be quite small for Q**2 > 1 (GeV/c)**2, and
the singlet axial charge has been determined to be a0[10 (GeV/c)**2] = 0.16 +/-
0.09. In case of higher order moments, which are sensitive to the large-x
region, higher-twist effects are significantly reduced by the introduction of
soft gluon contributions, but they are still relevant at Q**2 ~ few (GeV/c)**2
at variance with the case of the unpolarized transverse structure function of
the proton. Our finding suggests that spin-dependent correlations among partons
may have more impact than spin-independent ones. As a byproduct, it is also
shown that the Bloom-Gilman local duality is strongly violated in the region of
polarized electroproduction of the Delta(1232) resonance.Comment: revised version to appear in Phys. Rev. D; extended discussion on the
generalized DHG sum rul
Direct Measurements of the Branching Fractions for and and Determinations of the Form Factors and
The absolute branching fractions for the decays and
are determined using singly
tagged sample from the data collected around 3.773 GeV with the
BES-II detector at the BEPC. In the system recoiling against the singly tagged
meson, events for and events for decays are observed. Those yield
the absolute branching fractions to be and . The
vector form factors are determined to be
and . The ratio of the two form
factors is measured to be .Comment: 6 pages, 5 figure
- …