773 research outputs found

    Nutritional basis of type 2 diabetes remission.

    Get PDF
    Roy Taylor and colleagues explain how type 2 diabetes can be reversed by weight loss and avoidance of weight regai

    The Bolocam Galactic Plane Survey. XIV. Physical Properties of Massive Starless and Star Forming Clumps

    Full text link
    We sort 46834683 molecular clouds between 10<<6510^\circ< \ell <65^\circ from the Bolocam Galactic Plane Survey based on observational diagnostics of star formation activity: compact 7070 μm\mu{\rm m} sources, mid-IR color-selected YSOs, H2O{\rm H_2O} and CH3OH{\rm CH_3OH} masers, and UCHII regions. We also present a combined NH3{\rm NH_3}-derived gas kinetic temperature and H2O{\rm H_2O} maser catalog for 17881788 clumps from our own GBT 100m observations and from the literature. We identify a subsample of 22232223 (47.5%47.5\%) starless clump candidates, the largest and most robust sample identified from a blind survey to date. Distributions of flux density, flux concentration, solid angle, kinetic temperature, column density, radius, and mass show strong (>1>1 dex) progressions when sorted by star formation indicator. The median starless clump candidate is marginally sub-virial (α0.7\alpha \sim 0.7) with >75%>75\% of clumps with known distance being gravitationally bound (α<2\alpha < 2). These samples show a statistically significant increase in the median clump mass of ΔM170370\Delta M \sim 170-370 M_\odot from the starless candidates to clumps associated with protostars. This trend could be due to (i) mass growth of the clumps at M˙200440\dot{M}\sim200-440 Msun Myr1^{-1} for an average free-fall 0.80.8 Myr time-scale, (ii) a systematic factor of two increase in dust opacity from starless to protostellar phases, (iii) and/or a variation in the ratio of starless to protostellar clump lifetime that scales as M0.4\sim M^{-0.4}. By comparing to the observed number of CH3OH{\rm CH_3OH} maser containing clumps we estimate the phase-lifetime of massive (M>103M>10^3 M_\odot) starless clumps to be 0.37±0.08 Myr (M/103 M)10.37 \pm 0.08 \ {\rm Myr} \ (M/10^3 \ {\rm M}_\odot)^{-1}; the majority (M<450M<450 M_\odot) have phase-lifetimes longer than their average free-fall time.Comment: Accepted for publication in ApJ; 33 pages; 22 figures; 7 table

    Distributed Dynamic Density Coverage for Human-Swarm Interactions

    Get PDF
    © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.DOI: 10.1109/ACC.2015.7170761This paper presents two approaches to externally influence a team of robots by means of time-varying density functions. These density functions represent rough references for where the robots should be located. Recently developed continuous-time algorithms move the robots so as to provide optimal coverage of a given the time-varying density functions. This makes it possible for a human operator to abstract away the number of robots and focus on the general behavior of the team of robots as a whole. Using a distributed approximation to this algorithm whereby the robots only need to access information from adjacent robots allows these algorithms to scale well with the number of robots. Simulations and robotic experiments show that the desired behaviors are achieved

    Comparing variant calling algorithms for target-exon sequencing in a large sample

    Get PDF
    Abstract Background Sequencing studies of exonic regions aim to identify rare variants contributing to complex traits. With high coverage and large sample size, these studies tend to apply simple variant calling algorithms. However, coverage is often heterogeneous; sites with insufficient coverage may benefit from sophisticated calling algorithms used in low-coverage sequencing studies. We evaluate the potential benefits of different calling strategies by performing a comparative analysis of variant calling methods on exonic data from 202 genes sequenced at 24x in 7,842 individuals. We call variants using individual-based, population-based and linkage disequilibrium (LD)-aware methods with stringent quality control. We measure genotype accuracy by the concordance with on-target GWAS genotypes and between 80 pairs of sequencing replicates. We validate selected singleton variants using capillary sequencing. Results Using these calling methods, we detected over 27,500 variants at the targeted exons; >57% were singletons. The singletons identified by individual-based analyses were of the highest quality. However, individual-based analyses generated more missing genotypes (4.72%) than population-based (0.47%) and LD-aware (0.17%) analyses. Moreover, individual-based genotypes were the least concordant with array-based genotypes and replicates. Population-based genotypes were less concordant than genotypes from LD-aware analyses with extended haplotypes. We reanalyzed the same dataset with a second set of callers and showed again that the individual-based caller identified more high-quality singletons than the population-based caller. We also replicated this result in a second dataset of 57 genes sequenced at 127.5x in 3,124 individuals. Conclusions We recommend population-based analyses for high quality variant calls with few missing genotypes. With extended haplotypes, LD-aware methods generate the most accurate and complete genotypes. In addition, individual-based analyses should complement the above methods to obtain the most singleton variants.http://deepblue.lib.umich.edu/bitstream/2027.42/110906/1/12859_2015_Article_489.pd

    Tracing the Mass during Low-Mass Star Formation. II. Modelling the Submillimeter Emission from Pre-Protostellar Cores

    Get PDF
    We have modeled the emission from dust in pre-protostellar cores, including a self-consistent calculation of the temperature distribution for each input density distribution. Model density distributions include Bonnor-Ebert spheres and power laws. The Bonnor-Ebert spheres fit the data well for all three cores we have modeled. The dust temperatures decline to very low values (\Td \sim 7 K) in the centers of these cores, strongly affecting the dust emission. Compared to earlier models that assume constant dust temperatures, our models indicate higher central densities and smaller regions of relatively constant density. Indeed, for L1544, a power-law density distribution, similar to that of a singular, isothermal sphere, cannot be ruled out. For the three sources modeled herein, there seems to be a sequence of increasing central condensation, from L1512 to L1689B to L1544. The two denser cores, L1689B and L1544, have spectroscopic evidence for contraction, suggesting an evolutionary sequence for pre-protostellar cores.Comment: 22 pages, 9 figures, Ap. J. accepted, uses emulateapj5.st

    The Green Bank Ammonia Survey (GAS): First Results of NH3 mapping the Gould Belt

    Full text link
    We present an overview of the first data release (DR1) and first-look science from the Green Bank Ammonia Survey (GAS). GAS is a Large Program at the Green Bank Telescope to map all Gould Belt star-forming regions with AV7A_V \gtrsim 7 mag visible from the northern hemisphere in emission from NH3_3 and other key molecular tracers. This first release includes the data for four regions in Gould Belt clouds: B18 in Taurus, NGC 1333 in Perseus, L1688 in Ophiuchus, and Orion A North in Orion. We compare the NH3_3 emission to dust continuum emission from Herschel, and find that the two tracers correspond closely. NH3_3 is present in over 60\% of lines-of-sight with AV7A_V \gtrsim 7 mag in three of the four DR1 regions, in agreement with expectations from previous observations. The sole exception is B18, where NH3_3 is detected toward ~ 40\% of lines-of-sight with AV7A_V \gtrsim 7 mag. Moreover, we find that the NH3_3 emission is generally extended beyond the typical 0.1 pc length scales of dense cores. We produce maps of the gas kinematics, temperature, and NH3_3 column densities through forward modeling of the hyperfine structure of the NH3_3 (1,1) and (2,2) lines. We show that the NH3_3 velocity dispersion, σv{\sigma}_v, and gas kinetic temperature, TKT_K, vary systematically between the regions included in this release, with an increase in both the mean value and spread of σv{\sigma}_v and TKT_K with increasing star formation activity. The data presented in this paper are publicly available.Comment: 33 pages, 27 figures, accepted to ApJS. Datasets are publicly available: https://dataverse.harvard.edu/dataverse/GAS_DR

    Droplets I: Pressure-Dominated Sub-0.1 pc Coherent Structures in L1688 and B18

    Full text link
    We present the observation and analysis of newly discovered coherent structures in the L1688 region of Ophiuchus and the B18 region of Taurus. Using data from the Green Bank Ammonia Survey (GAS), we identify regions of high density and near-constant, almost-thermal, velocity dispersion. Eighteen coherent structures are revealed, twelve in L1688 and six in B18, each of which shows a sharp "transition to coherence" in velocity dispersion around its periphery. The identification of these structures provides a chance to study the coherent structures in molecular clouds statistically. The identified coherent structures have a typical radius of 0.04 pc and a typical mass of 0.4 Msun, generally smaller than previously known coherent cores identified by Goodman et al. (1998), Caselli et al. (2002), and Pineda et al. (2010). We call these structures "droplets." We find that unlike previously known coherent cores, these structures are not virially bound by self-gravity and are instead predominantly confined by ambient pressure. The droplets have density profiles shallower than a critical Bonnor-Ebert sphere, and they have a velocity (VLSR) distribution consistent with the dense gas motions traced by NH3 emission. These results point to a potential formation mechanism through pressure compression and turbulent processes in the dense gas. We present a comparison with a magnetohydrodynamic simulation of a star-forming region, and we speculate on the relationship of droplets with larger, gravitationally bound coherent cores, as well as on the role that droplets and other coherent structures play in the star formation process.Comment: Accepted by ApJ in April, 201
    corecore