
Distributed Dynamic Density Coverage for Human-Swarm
Interactions

Yancy Diaz-Mercado, Sung G. Lee and Magnus Egerstedt

Abstract— This paper presents two approaches to exter-
nally influence a team of robots by means of time-varying
density functions. These density functions represent rough
references for where the robots should be located. Recently
developed continuous-time algorithms move the robots so
as to provide optimal coverage of a given the time-varying
density functions. This makes it possible for a human
operator to abstract away the number of robots and
focus on the general behavior of the team of robots as a
whole. Using a distributed approximation to this algorithm
whereby the robots only need to access information from
adjacent robots allows these algorithms to scale well with
the number of robots. Simulations and robotic experiments
show that the desired behaviors are achieved.

I. INTRODUCTION

With the advent of new, smaller and more powerful
technology, smaller and cheaper robots have made the
study of multi-robot systems gain popularity in the
academic community. In particular, there has been a
lot of stride in the area of human-swarm interaction
(HSI), where a single human operator is able to influence
large teams of robots [1]–[3]. Using the work in [4], we
propose two methods for HSI with which to influence
teams of robots. These are in no way exhaustive, nor are
they the optimal way of influencing multi-robot systems,
they merely provide a foundation for future development
and refinement of distributed, dynamic density coverage
for HSI ideas.

The organization of this paper is as follows. Section II
provides a brief description of recently developed math
and update laws that serve as the backbone for the HSI
methods presented. Section III begins discussion on how
to use these tools to influence multi-robot teams. In
this section we also present two HSI methods, one is
tailored for obtaining desired geometric configurations,
the other for quick manipulation of the swarm as a
whole. These methods are tested through simulation and
robotic implementation.

This work was supported by a grant from the US Air Force Office
of Scientific Research.

The authors are with the Department of Electrical and Computer
Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
yancy.diaz@gatech.edu, slee656@gatech.edu,
magnus@gatech.edu

II. MULTI-ROBOT CONTROL USING TIME-VARYING
DENSITY FUNCTIONS

The proposed human-swarm interfaces discussed in
subsequent sections rely on recently developed control
laws that achieve optimal coverage of time-varying
densities in a distributed fashion [4], which extends on
the work of [5]–[10]. For the sake of completeness, in
this section we recall some of the formulations described
in [4] and refer the readers to this for a more wholesome
discussion on these control laws. We will however
elaborate on some of the more subtle difficulties not
discussed in [4] to enrich its content.

A. Time-Varying Density Functions: Centralized Case
In order to discuss optimal coverage, we must first

associate the configuration of the team of robots to a cost
on how well the team is covering the area of interest. We
denote D⊂R2 to be the two-dimensional convex domain
representing the area of interest. Within the area of inter-
est, we wish to deploy a team of n robots with positions
pi ∈ D, i = 1,2, . . . ,n, and influence this team of robots
to achieve particular configurations. For convenience, we
can collect the position of the agents into a single vector
p =

[
pT

1 , . . . , pT
n
]T . The configurations are specified by

assigning some relative importance to the points in D
at a given time. We let φ : D× [0,∞) → (0,∞) be a
bounded density function, C1 in both arguments. The
relative importance of a point q ∈ D at time t is then
captured by φ (q, t). Since the performance of a large
class of sensors deteriorates with a rate proportional to
the square of the distance [11], [12], we consider the
following so-called locational cost

H(p, t) =
n

∑
i=1

∫
Vi(p)
‖q− pi‖2

φ(q, t)dq (1)

where the domain D has been partitioned into regions
of dominance (e.g., [7]), letting each agent in charge
of covering only their region. In particular, we utilize a
Voronoi tessellation since it has been shown to minimize
the locational cost for given p, [6]. The Voronoi cell for
agent i would be given by

Vi(p) = {q ∈ D | ‖q− pi‖ ≤
∥∥q− p j

∥∥ , i 6= j}. (2)

In [13], [14] it was shown that

∂H
∂ pi

=
∫

Vi

−2(q− pi)
T

φ(q, t)dq = 2mi(pi− ci)
T , (3)

where one can define the mass mi and center of mass ci
of the ith Voronoi cell, Vi, as

mi(p, t) =
∫

Vi(p)
φ(q, t)dq, (4)

ci(p, t) =
∫

Vi(p)
qφ(q, t)dq

/
mi (5)

since φ > 0. From (3), it can be seen that a critical point
of (1) is

pi(t) = ci(p, t), i = 1, · · · ,n, (6)

and so a minimizer to (1) is necessarily in this form,
[15]. Moreover, when (6) is satisfied, p is a so-called
centroidal Voronoi tessellation (CVT).

Let c =
[
cT

1 , . . . ,c
T
n
]T . Using the above notation, we

present the following result, originally stated in [4]
Theorem 2.1: Let p(t0) = c(p(t0) , t0). If

ṗ =

(
I− ∂c

∂ p

)−1
∂c
∂ t

, t ≥ t0

then

‖p(t)− c(p(t) , t)‖= 0, t ≥ t0

as long as the inverse (I−∂c
/

∂ p)−1 is well-defined.
Proof: Assume the agents begin from a CVT con-

figuration, i.e., p(t0) = c(p(t0) , t0). We need to ensure
that

d
dt

(p(t)− c(p(t) , t)) = 0, ∀t ≥ t0.

But this implies that ṗ = ċ = ∂c
∂ p ṗ+ ∂c

∂ t , which can be
rearranged into the form

ṗ =
(

I− ∂c
∂ p

)−1
∂c
∂ t

as long as the inverse is well-defined.
However, in order for this theorem to be meaningful,

we require that the agents first achieve at a CVT con-
figuration which could then be maintained. Moreover,
this control law assumes the agents will be able to in-
stantaneously accelerate to the required velocities, which
may not be possible in practice. In order compensate
for saturation, modeling errors and deviations from the
CVT, in [4] a proportional term is introduced that forces
the agents into a CVT. This update law was called
the TVD-C which stands for Time-Varying Densities,
Centralized case:

ṗ =

(
I− ∂c

∂ p

)−1(
−κ (p− c)+

∂c
∂ t

)
(7)

where κ > 0 is a proportional gain. It is noteworthy that
this proportional term influences the team of robots to
move towards a (scaled) gradient descent direction to
achieve a CVT configuration, and that once a CVT is
achieved the proportional term does not contribute to the
update law and theorem 2.1.

Two subtle difficulties remain with update law (7).
The first is the computation of the deceivingly innocent
looking terms ∂c

/
∂ p and ∂c

/
∂ t . Recall that by com-

bining equations (4) and (5), we have that

ci (p, t) =

∫
Vi(p) qφ(q, t) dt∫
Vi(p) φ(q, t) dt

,

which depends on p in the boundary of the area over
which the two integrals are taken.

In order to compute these partials, we’ll first need to
make use of Leibniz rule, e.g., [16].

Lemma 2.2: Let Ω(p) be a region that is a smooth
function of p such that the unit outward normal vector
n is uniquely defined almost everywhere on ∂Ω, which
is the boundary of Ω. Let

F =
∫

Ω(p)
f (q)dq.

Then
∂F
∂ p

=
∫

∂Ω(p)
f (q)q̂ ·n(q)dq

where q̂ is the derivative of the points on ∂Ω with respect
to p.

In [16], it was investigated how Voronoi cells changed
as functions of pi. In fact, it was shown in [16] that for
any point q∈ ∂Vi, j (the boundary between adjacent cells
Vi and Vj),

∂q

∂ p(b)j

· (p j− pi) =
1
2

eb · (p j− pi)− eb ·
(

q−
pi + p j

2

)
,

∂q

∂ p(b)i

· (p j− pi) =
1
2

eb · (p j− pi)+ eb ·
(

q−
pi + p j

2

)
,

where p(b)j denotes the bth component of the vector p j

and eb is the bth elementary unit vector. Note that in this
paper, b = 1,2 since we are considering the case D⊂R2

only.
Substituting this into Leibniz rule, we obtain

∂c(a)i

∂ p(b)j

=

∫
∂Vi, j

φq(a)
p(b)j −q(b)∥∥p j− pi

∥∥ dq

/mi

−

∫
∂Vi, j

φ
p(b)j −q(b)∥∥p j− pi

∥∥ dq

(∫
Vi(P)

φq(a)dq
)/

m2
i (8)

where a = 1,2, b = 1,2 and where i 6= j. When i = j we
must consider the contribution from all neighbors

∂c(a)i

∂ p(b)i

= ∑
k∈NVi

[(∫
∂Vi,k

φq(a)
q(b)− p(b)i
‖pk− pi‖

dq

)/
mi

−

(∫
∂Vi,k

φ
q(b)− p(b)i
‖pk− pi‖

dq

)(∫
Vi(P)

φq(a)dq
)/

m2
i

]
(9)

which gives us all we need to compute ∂c/∂ p. It
is noteworthy that given a continuously differentiable
density function φ , computing ∂c

/
∂ p at any given

time t becomes an exercise in finding line and area
integrals. In implementation, it suffices to use numerical
approximations to obtain these integrals (e.g., Riemann
sums and Gaussian quadrature rule).

One more partial derivative is required for update law
(7), namely ∂c

/
∂ t. Another application of Leibniz rule

results in

∂ci

∂ t
=

mi
∫

Vi
q ∂φ

∂ t (q, t)dq− ∂mi
∂ t

∫
Vi

qφ(q, t)dq

m2
i

(10)

with ∂mi
∂ t =

∫
Vi(p)

∂φ

∂ t (q, t)dq and ∂c
∂ t

T
= [∂c1

∂ t
T
· · · ∂cn

∂ t
T
].

Note that in implementation, this is again a matter of
numerically computing integrals. However, unlike with
∂c
/

∂ p, we require knowledge of ∂φ
/

∂ t. If φ is not
provided analytically in t, then one could:

i Utilize a finite difference scheme to approximate
∂φ
/

∂ t. This could however give rise to difficulties
with noisy measurements. This approach is utilized
in the implementation found in section III-B.

ii Alternatively, the user could provide the “shape”
of the density with a continuously differentiable
function φ(q, t0) defined over D, and define its time
evolution directly via a continuous function ∂φ/∂ t
such that φ(q, t) =

∫ t
t0

∂φ

∂ t (q,τ)dτ . This is the ap-
proach used in the implementation found in section
III-A.

The second subtle difficulty with update law (7) is
ensuring that the inverse (I−∂c

/
∂ p)−1 is well defined,

which is in general hard to do. In [16] it was shown that
in the time-invariant case, the inverse is well-defined
as long as φ(p) is a log-concave function of p. We
would also need φ to be continuously differentiable in
both arguments, so these two conditions are enough to
ensure that the inverse exists. Since the motivation for
this work is to have a human operator influence the
team of robots by generating these densities functions,
the former constraint is quite an unsatisfying one, for
it would greatly reduce the types of density functions
allowable. Moreover, the computation of this 2n× 2n

matrix inversion does not scale well with increase in
number of agents, and requires information on every
agent which makes it a centralized scheme. Fortunately,
it is possible to alleviate these concerns by performing
a distributed approximation of update law (7).

B. Distributed Approximations

In [4], a family of distributed approximations to
update law (7) were presented which trades-off hav-
ing to find the computationally costly matrix inverse
(I−∂c

/
∂ p)−1 with imposing network connectivity con-

straints on the team of robots. As a consequence, we can
discard the use of the matrix inverse, which could be
ill-defined under certain conditions, with a well-defined
series approximation. These distributed update laws lie
at the heart of the proposed human-swarm interfaces, so
a brief treatment of their derivation is included for the
sake of completeness. The required approximation can
be found by using the Neumann series, e.g., [17].

Lemma 2.3 (Neumann series): Let A be a square ma-
trix. If limk→∞ Ak = 0, then I−A is invertible and

(I−A)−1 = I +A+A2 +A3 +

Moreover, for a m×m square matrix A, limk→∞ Ak = 0 if
and only if |λi|< 1 for all i= 1,2, · · · ,m, where λi are the
eigenvalues of A. As such, let λmax denote the eigenvalue
with the largest magnitude of the matrix ∂c/∂ p. Using
the Neumann series, we can express (I−∂c/∂ p)−1 as(

I− ∂c
∂ p

)−1

= I +
∂c
∂ p

+

(
∂c
∂ p

)2

+ . . . (11)

as long as |λmax|< 1.
Our goal will be to truncate this series to obtain the

well-defined approximation to the matrix inverse, but
then the question arises: how many terms should be
kept? The answer lies in the sparsity structure of ∂c

/
∂ p.

Given a Voronoi partition of the area of interest, we
denote the boundary between the two cells Vi and Vj
by ∂Vi j. Since we are only considering the planar case,
there are three possibilities for ∂Vi j:

i ∂Vi j is empty, meaning that cells Vi and Vj do not
intersect.

ii ∂Vi j consist of a single point, meaning that cells Vi
and Vj share a single vertex.

iii ∂Vi j is a line, meaning that cells Vi and Vj share a
face.

We will denote NVi to be set of indexes pertaining to the
agents whose Voronoi cells Vj share a face with agent
i’s Voronoi cell Vi.

Lemma 2.4: j /∈ NVi =⇒ ∂ci

∂ p j
= 0.

Proof: For the first two cases, i.e., ∂Vi j is either
empty or consists of a singleton, from (8) and (9) we see
that the integrals over ∂Vi j would be zero. Note that for
these two cases, this will be true for all four elements
in ∂ci

/
∂ p j. Since these two cases correspond to agents

i and j not sharing a face, we conclude that j /∈ NVi

implies that ∂ci
/

∂ p j = 0.
This lemma tells us that ∂c

/
∂ p actually encodes adja-

cency information of the graph induced by the Voronoi
tessellation. This induced graph is known as the Delau-
nay graph. To obtain a distributed update law, we must
insist that the update for ṗi depends only on information
from itself (pi and φ(q, t) for q∈Vi) and information on
neighboring agents (p j and φ(q, t) for q∈Vj, for all j ∈
NVi). To this end, we truncate the Neumann series in (11)
after just two entries, i.e.,

(
I−∂c

/
∂ p
)−1 ≈ I+∂c

/
∂ p.

By modifying update law (7) with this approximation,
we obtain the update law

ṗ =

(
I +

∂c
∂ p

)(
−κ (p− c)+

∂c
∂ t

)
,

which at the individual robot level results in the update
law called TVD-D1 for Time-Varying Densities, Dis-
tributed case with 1-hop adjacency information:

ṗi =
∂ci

∂ t
−κ (pi− ci)+ ∑

j∈NVi

∂ci

∂ p j

(
∂c j

∂ t
−κ (p j− c j)

)
.

(12)

It should be noted that (12) is always well-defined
(as long as φ is continuously differentiable). In other
words, even if the Neumann series is not convergent
or if the inverse does not exist, the entries in (12)
are well-defined. In fact, it turns out that during the
robotic experiment, even in cases where |λmax|> 1, the
robots consistently evolve in a manner that achieves
coverage. In [4], a comparison is made between both the
centralized and decentralized approaches shown here to
other available techniques for coverage of time-varying
densities — we refer the readers to it for a discussion
on how they compare.

III. DENSITIES FOR HUMAN-SWARM INTERFACES

The fact that only adjacency information is required
in update law (12) means that a single operator could
potentially influence arbitrarily large number of agents.
Due to the scalability of the algorithm, and the level
of abstraction that the generation of density functions
offers (in that it does not care for the number of agents
performing the coverage), it is possible to use (12) as
a tool for human-swarm interaction (HSI) in order to
allows for human operators to influence teams of robots

by generating density functions and having these robots
perform coverage. However, how should the human
operator generate these densities? In this section we
offer two different means of generating density functions
for HSI. The first method allows the user to easily
specify the geometric configuration of the swarm and
“move” them around, but at an added computational
cost. The second method reduces computational cost by
using predefined Gaussian functions to allow the human
operator to quickly assign importance to the area of
interest. It is fast and allows the user to “move” the team
of robot easily, but is not as amenable to “shaping” the
swarm as the first method.

A. Diffusion of Drawn Geometric Configurations

We now present an approach that allows the user
to specify the geometric configuration of the swarm.
The process consists of allowing the human operator
to draw the desired shape in the tablet-like interface.
This drawing, taken as a binary image over the area of
interest Ψ : D→{0,1}, can be made smooth and turned
into a continuously differentiable function in the spatial
argument by evolving it as a diffusion process. The end
result is a smooth, non parametric density function with
the pixels determining the density intensities. One could
then simply pass the image to the numerical integrating
tools to obtain update law for the agents, interpolating
between pixel values as needed. Fig. 1a illustrates an
example of the smoothed drawing that represents the
desired density.

However, in order to reduce the amount of information
needed to be communicated to the agents, it is possible
to use the level sets of the resulting image to come up
with a Gaussian Mixture Model (GMM), which would
collapse the dimensionality from the pixel count (which
could be significant) to k centroids and covariances,
k being the amount of Gaussian functions desired to
approximate the non parametric density, thus reducing
significantly the amount of information required to rep-
resent the density.

In [18], a process to obtain a GMM from a data set
with redundancies over the data is presented. This pro-
cess can be utilized to obtain a parametric approximation
of the desired density. In order to generate the required
redundant data sets, sample points can be selected from
the contour level sets of the desired density. The points
in this data set are then grouped into k clusters, where
the design parameter k is the number of Gaussian models
used in the GMM. A larger k can be used for a finer
approximation of the desired density whereas a smaller
k can be used for coarser approximation. The data from
each cluster is used to determine the parameters for each

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Smooth
Nonparametric Density 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x
1

x 2

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x
1

x 2

(b) Level Set Sample Data & GMM
Parametric Density Estimate

(c) Coverage by 5 agents.
−0.2 0 0.2 0.4 0.6 0.8 1 1.2

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(d) Coverage by 20 agents.

Fig. 1: Distributed coverage simulation of a
time-varying, user provided density.

of the Gaussian models. Fig. 1b illustrates the data set
obtained from the original drawing with the redundant
data points obtained from the level set contours of the
desired density function. Fig. 1b also illustrates the
GMM found to approximate the density with the use
of nine Gaussian functions.

The GMM illustrated in Fig. 1b was used as an
input the TV D−D1. The density was made time-varying
by making every Gaussian function’s centroid follow a
circular orbit, i.e., the density was in the general form

φ(q, t) = ∑
n
i=1

αi
2π
√

det(Σi)
e−

1
2 (µi−ν(t)−q)T

Σ
−1
i (µi−ν(t)−q)

where the parameters αi are such that ∑
n
i=1 αi = 1, µi

and Σi correspond to the centroid and covariance for
the ith Gaussian function in the GMM of n Gaussian
functions, and ν(t) = (r sin(bt),r cos(bt))T with r and
b being fixed parameters used to determine the time
evolution of the circular orbit. Fig. 1 illustrates a team
of five and 20 robots performing coverage of the GMM
with n = 9, r = 0.2 and b = π/4. The contours of the
density are illustrated with dotted lines, solid lines are
used as the boundaries of the Voronoi cells, the crosses
correspond to the centroid of each Voronoi cell and the
circles represent the agents performing the coverage.

B. Control of Gaussian Functions

The previous approach allows an user to generate a
density function that captures the important areas to be
covered by simply drawing over the domain. In order to
reduce the amount of information required to describe
the generated non parametric density, this was approx-
imated by a Gaussian Mixture Model (GMM) with k

Gaussian functions. However, if the human operator
is less interested in the geometric shape the swarm
takes and more interested in actively manipulating the
swarm by dragging it as a whole, splitting and merging
it, then GMM concept from the previous method can
be modified by discarding the a priori weights and
fixing the general “shape” of the Gaussian functions.
This greatly reduces computation and allows the user
to provide quick references on where the agents should
concentrate.

The method involves allowing the human opera-
tor to “tap” on a tablet the spots where the agents
should concentrate. Influence on the team of robots is
achieved by performing coverage of the density func-
tion made of Gaussian functions in the form φ(q, t) =
1
M ∑

M
`=1 e−

1
2 (q−µ`)

T
Σ−1(q−µ`), where Σ is a positive defi-

nite two dimensional matrix that determines the “shape”
for the the Gaussian functions, M is the number of
fingers the user is tapping with and µ` is the location of
the fingers in the plane and will also correspond to the
centroid of the Gaussian functions, `= 1, . . . ,M.

The control of Gaussian functions method was imple-
mented in a multi-robot system, where the human oper-
ator used an iPad to input the centroid of the Gaussian
functions. These were transmitted over WiFi and UDP to
an Ubuntu (version 11.04) computer with an Intel dual
core CPU 2.13GHz and 4GB of memory, running ROS
(Robot Operating System, version Diamondback). This
computer also received state information from ten Opti-
Track S250e motion capture cameras that were used to
provide position and orientation data for the robots. The
state information of an agent and its neighbors was used
to compute the Voronoi tessellation. For every agent,
only it and its neighbors’ state and density information in
their respective Voronoi cells were used to compute the
control. Line integrals were approximated by Riemann
sums, whereas Gaussian quadrature rule was used for
area integrals. A finite difference scheme was used to
approximate ∂φ/∂ t based on stored samples of the
density function. Even though a central computer is used
for the computation, the control is computed for every
agent only using adjacency information, and then it is
transmitted to the pertinent robot via WiFi and UDP. The
robotic platforms used for the experiments were Khepera
III robots from K-team – differential drive wheeled
robots equipped with a wireless card for communication
over a wireless router. The rviz package in ROS was
used for visualizations, such as the position and the
orientation of the robots, the density function, and the
Voronoi partitions. The visualization was overlapped
with the real physical environment to give a real-time

(a) Using only one finger.

(b) Using three fingers.

Fig. 2: Multi-robot implementation of the control of
Gaussian functions method for HSI.

visual representation. This is shown in Fig. 2, where
the solid lines represent the boundary of the Voronoi
cells and the small circles represent their centroid. The
arrows emerging from the robots point in the direction
of motion as determined by the update law.

As the Khepera III mobile robots are differential-
drive robots, they can be modeled as unicycles, i.e.,
ẋi = vi cosθi, ẏi = vi sinθi, and θ̇i = ωi, where (xi,yi)
is the position of robot i on the plane, θi its heading,
and vi, ωi are the translational and angular velocities. In
contrast to this, the coverage algorithm provides desired
motions in terms of ṗi and we map these onto vi,ωi
through vi = ‖ ṗi‖, and ωi = [−sinθi,cosθi] · ṗi

/
‖ṗi‖.

IV. CONCLUSIONS

This paper presented two preliminary approaches to
HSI using the update laws presented in [4]. One ap-
proach generates a C1 density functions that allows the
user to easily describe the desired geometric configu-
ration the swarm should take by drawing the general
shape on a tablet-like interface. The second approach
allows the human operator to quickly manipulate the
position of the swarm when the geometric configuration
is not the main objective. The user only needs to “tap”
on a tablet-like interface to provide a density for the
robots, without the computational burden of generating

the density function the previous method incurs.

REFERENCES

[1] S. Bashyal and G. Venayagamoorthy, “Human swarm interaction
for radiation source search and localization,” in Swarm Intelli-
gence Symposium, 2008. SIS 2008. IEEE, Sept 2008, pp. 1–8.

[2] M. Diana, J.-P. de la Croix, and M. Egerstedt, “Deformable-
medium affordances for interacting with multi-robot systems,”
in Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ Inter-
national Conference on, Nov 2013, pp. 5252–5257.

[3] E. Schoof, A. Chapman, and M. Mesbahi, “Bearing-compass
formation control: A human-swarm interaction perspective,” in
American Control Conference (ACC), 2014, June 2014, pp.
3881–3886.

[4] S. G. Lee, Y. Diaz-Mercado, and M. Egerstedt, “Multi-Robot
Control Using Time-Varying Density Functions,” IEEE Transac-
tions on Robotics, To Appear.

[5] S. Lloyd, “Least squares quantization in PCM,” IEEE Transac-
tions on Information Theory, vol. 28, no. 2, pp. 129–137, Sept.
2006.

[6] J. Cortes, S. Martinez, T. Karatas, and F. Bullo, “Coverage
control for mobile sensing networks: Variations on a theme,” in
Mediterranean Conference on Control and Automation, Lisbon,
Portugal, July 2002, Electronic Proceedings.

[7] ——, “Coverage control for mobile sensing networks,” IEEE
Transactions on Robotics and Automation, vol. 20, no. 2, pp.
243–255, Apr. 2004.

[8] A. Ghosh and S. K. Das, “Coverage and connectivity issues
in wireless sensor networks: A survey,” Pervasive and Mobile
Computing, vol. 4, no. 3, pp. 303–334, 2008.

[9] A. Ghaffarkhah, Y. Yan, and Y. Mostofi, “Dynamic cover-
age of time-varying environments using a mobile robot – A
communication-aware perspective,” in GLOBECOM Workshops
(GC Wkshps), 2011 IEEE, 2011, pp. 1297–1302.

[10] Y. Q. Chen, Z. Wang, and J. Liang, “Automatic dynamic flocking
in mobile actuator sensor networks by central voronoi tessel-
lations,” in Mechatronics and Automation, 2005 IEEE Interna-
tional Conference, vol. 3, 2005, pp. 1630–1635 Vol. 3.

[11] S. Meguerdichian, F. Koushanfar, G. Qu, and M. Potkonjak,
“Exposure in wireless Ad-Hoc sensor networks,” in Proceedings
of the 7th annual international conference on Mobile computing
and networking, ser. MobiCom ’01. New York, NY, USA:
ACM, 2001, pp. 139–150.

[12] S. Adlakha and M. B. Srivastava, “Critical density thresholds for
coverage in wireless sensor networks,” in Wireless Communica-
tions and Networking Conference (WCNC). IEEE, 2003, pp.
1615–1620.

[13] M. Iri, K. Murota, and T. Ohya, “A fast Voronoi-diagram algo-
rithm with applications to geographical optimization problems,”
in System Modelling and Optimization, ser. Lecture Notes in
Control and Information Sciences, P. Thoft-Christensen, Ed.
Springer Berlin Heidelberg, 1984, vol. 59, pp. 273–288.

[14] Q. Du, V. Faber, and M. Gunzburger, “Centroidal Voronoi Tes-
sellations: Applications and Algorithms,” SIAM Review, vol. 41,
no. 4, pp. 637–676, Dec. 1999.

[15] Q. Du, M. Emelianenko, and L. Ju, “Convergence of the Lloyd
Algorithm for Computing Centroidal Voronoi Tessellations,”
SIAM Journal on Numerical Analysis, vol. 44, no. 1, pp. 102–
119, Jan. 2006.

[16] Q. Du and M. Emelianenko, “Acceleration schemes for comput-
ing centroidal Voronoi tessellations,” Numerical Linear Algebra
with Applications, vol. 13, no. 2-3, pp. 173–192, 2006.

[17] G. Stewart, Matrix Algorithms Volume 1: Basic Decompositions.
Society for Industrial and Applied Mathematics, 1998.

[18] S. Calinon, F. Guenter, and A. Billard, “On Learning, Repre-
senting and Generalizing a Task in a Humanoid Robot,” IEEE
Transactions on Systems, Man and Cybernetics, Part B, vol. 37,
no. 2, pp. 286–298, 2007.

