1,117 research outputs found

    LES of additive and non-additive pulsatile flows in a model arterial stenosis

    Get PDF
    Transition of additive and non-additive pulsatile flows through a simple 3D model of arterial stenosis is investigated by using a large eddy simulation (LES) technique. We find in both the pulsatile cases that the interaction of the two shear layers, one of which separates from the nose of the stenosis and the another one from its opposite wall, causes recirculation in the flow downstream of the stenosis where the nature of the transient flow becomes turbulent. The strength of this recirculation is found to be quite high from the non-additive pulsations when the flow Reynolds numbers, Re ≥ 1500, for which both the pressure and shearing stresses take on an oscillating form at the post-stenotic region. Potential medical consequences of these results are discussed in the paper. In addition, some comparisons of the non-additive pulsatile results are given with those of both the additive pulsatile and steady flows. The capability of using LES to simulate the pulsatile transitional flow is also assessed, and the present results show that the smaller (subgrid) scales (SGS) contributes about 78% energy dissipation to the flow when the Reynolds number is taken as 2000. The level of SGS dissipation decreases as the Reynolds number is decreased. The numerical results are validated with the experimental data available in literature where a quite good agreement is found

    Influence of annealing on Fermi-level pinning and current transport at Au-Si and Au-GaAs Interfaces

    Get PDF
    The measurements of internal photoemission and photovoltage within the temperature range of 7-300 K have been performed for unannealed and annealed Au/n-Si and Au/n-GaAs samples. From the internal photoemission measurements, it was observed that annealing at different temperatures does not affect the relativity of interfacial Fermi-level pinning to either the conduction band (for Au/GaAs) or the valence band (for Au/Si) but leads to a significant change of the Schottky barrier height. On the other hand, the photovoltage measurements show that the current transport at the metal/semiconductor interfaces is seriously affected by annealing. © 1995 American Institute of Physics.published_or_final_versio

    Interfacial Fermi level and surface band bending in Ni/semi-insulating GaAs contact

    Get PDF
    For nickel on the chemically clean surface of undoped semi-insulating GaAs at room temperature, an upward surface band bending of 0.062 eV and a barrier height of 0.690 eV have been observed by the photovoltage and the internal photoemission techniques, respectively. The observed surface band bending is in excellent agreement with its predicted value, and the observed barrier height also agrees very well with its value from the very careful analysis of reversed I-V data. It has been determined that the interfacial Fermi level lies at 0.690 eV below the GaAs conduction band minimum at the interface. The interfacial Fermi level is found to coincide with the energy level of the EL2 native defect, indicating the importance of the EL2 in the Fermi level pinning at the interface. © 1995 American Institute of Physics.published_or_final_versio

    Characterization of Pt-Si interface by spectroscopic ellipsometry

    Get PDF
    Spectroscopic ellipsometric measurements for Pt/n-Si samples with different thickness of Pt films have been performed. The thickness of the Pt films determined with the three-phase model (air/Pt/Si) changes with the wavelength λ while that with the four-phase model (air/Pt/interface layer/Si) remains unchanged, showing the existence of an interface layer. At the same time, the apparent optical dielectric constants of the interface layer as a function of λ are also obtained. A calculation based on the effective medium theory is carried out to simulate the optical dielectric data of the interface layer. Some structural information of the interface layer is obtained from the calculation. © 1994 American Institute of Physics.published_or_final_versio

    Mechanical identification of layer-specific properties of mouse carotid arteries using 3D-DIC and a hyperelastic anisotropic constitutive model

    Get PDF
    The role of mechanics is known to be of primary order in many arterial diseases; however, determining mechanical properties of arteries remains a challenge. This paper discusses the identifiability of the passive mechanical properties of a mouse carotid artery, taking into account the orientation of collagen fibres in the medial and adventitial layers. On the basis of 3D digital image correlation measurements of the surface strain during an inflation/extension test, an inverse identification method is set up. It involves a 3D finite element mechanical model of the mechanical test and an optimisation algorithm. A two-layer constitutive model derived from the Holzapfel model is used, with five and then seven parameters. The five-parameter model is successfully identified providing layer-specific fibre angles. The seven-parameter model is over parameterised, yet it is shown that additional data from a simple tension test make the identification of refined layer-specific data reliable.Comment: PB-CMBBE-15.pd

    Longitudinal residual strain and stress-strain relationship in rat small intestine

    Get PDF
    BACKGROUND: To obtain a more detailed description of the stress-free state of the intestinal wall, longitudinal residual strain measurements are needed. Furthermore, data on longitudinal stress-strain relations in visceral organs are scarce. The present study aims to investigate the longitudinal residual strain and the longitudinal stress-strain relationship in the rat small intestine. METHODS: The longitudinal zero-stress state was obtained by cutting tissue strips parallel to the longitudinal axis of the intestine. The longitudinal residual stress was characterized by a bending angle (unit: degrees per unit length and positive when bending outwards). Residual strain was computed from the change in dimensions between the zero-stress state and the no-load state. Longitudinal stresses and strains were computed from stretch experiments in the distal ileum at luminal pressures ranging from 0–4 cmH(2)O. RESULTS: Large morphometric variations were found between the duodenum and ileum with the largest wall thickness and wall area in the duodenum and the largest inner circumference and luminal area in the distal ileum (p < 0.001). The bending angle did not differ between the duodenum and ileum (p > 0.5). The longitudinal residual strain was tensile at the serosal surface and compressive at the mucosal surface. Hence, the neutral axis was approximately in the mid-wall. The longitudinal residual strain and the bending angle was not uniform around the intestinal circumference and had the highest values on the mesenteric sides (p < 0.001). The stress-strain curves fitted well to the mono-exponential function with determination coefficients above 0.96. The α constant increased with the pressure, indicating the intestinal wall became stiffer in longitudinal direction when pressurized. CONCLUSION: Large longitudinal residual strains reside in the small intestine and showed circumferential variation. This indicates that the tissue is not uniform and cannot be treated as a homogenous material. The longitudinal stiffness of the intestinal wall increased with luminal pressure. Longitudinal residual strains must be taken into account in studies of gastrointestinal biomechanical properties

    Indium tin oxide nanowires growth by dc sputtering

    Get PDF
    Indium tin oxide nanowires have been grown by dc sputtering on different substrates without the use of catalysts or oblique deposition. The nanowire length was of the order of several μm, while their diameter was ∼50- 100 nm. Small side branches on the nanowires were frequently observed. The nanowires were characterized by scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The growth mechanism of the nanowires is discussed. © Springer-Verlag 2011.published_or_final_versionSpringer Open Choice, 21 Feb 201

    Photoinduced Dehydrogenation of Defects in Undoped a-Si:H Using Positron Annihilation Spectroscopy

    Get PDF
    We report changes in variable-energy positron annihilation spectroscopy measurements on undoped hydrogenated amorphous silicon films after light soaking. The change, seen predominantly in the high momentum band of the annihilation radiation, is not reversed by thermal annealing. We suggest, following recent models of the Staebler-Wronski effect, that light exposure induces hydrogen trapped in vacancylikc detects to become mobile in the Si network. The observations place constraints on models of hydrogen motion fitting macroscopic Staebler-Wronski effect kinetics and may help to achieve a definitive description of metastability in a-Si:H.published_or_final_versio

    Cobalt chloride pretreatment promotes cardiac differentiation of human embryonic stem cells under atmospheric oxygen level

    Get PDF
    Our previous study demonstrated the direct involvement of the HIF-1α subunit in the promotion of cardiac differentiation of murine embryonic stem cells (ESCs). We report the use of cobalt chloride to induce HIF-1α stabilization in human ESCs to promote cardiac differentiation. Treatment of undifferentiated hES2 human ESCs with 50μM cobalt chloride markedly increased protein levels of the HIF-1α subunit, and was associated with increased expression of early cardiac specific transcription factors and cardiotrophic factors including NK2.5, vascular endothelial growth factor, and cardiotrophin-1. When pretreated cells were subjected to cardiac differentiation, a notable increase in the occurrence of beating embryoid bodies and sarcomeric actinin-positive cells was observed, along with increased expression of the cardiac-specific markers, MHC-A, MHC-B, and MLC2V. Electrophysiological study revealed increased atrial-and nodal-like cells in the cobalt chloride-pretreated group. Confocal calcium imaging analysis indicated that the maximum upstroke and decay velocities were significantly increased in both noncaffeine and caffeine-induced calcium transient in cardiomyocytes derived from the cobalt chloride-pretreated cells, suggesting these cells were functionally more mature. In conclusion, our study demonstrated that cobalt chloride pretreatment of hES2 human ESCs promotes cardiac differentiation and the maturation of calcium homeostasis of cardiomyocytes derived from ESCs. © 2011 Mary Ann Liebert, Inc.published_or_final_versio
    corecore