The role of mechanics is known to be of primary order in many arterial
diseases; however, determining mechanical properties of arteries remains a
challenge. This paper discusses the identifiability of the passive mechanical
properties of a mouse carotid artery, taking into account the orientation of
collagen fibres in the medial and adventitial layers. On the basis of 3D
digital image correlation measurements of the surface strain during an
inflation/extension test, an inverse identification method is set up. It
involves a 3D finite element mechanical model of the mechanical test and an
optimisation algorithm. A two-layer constitutive model derived from the
Holzapfel model is used, with five and then seven parameters. The
five-parameter model is successfully identified providing layer-specific fibre
angles. The seven-parameter model is over parameterised, yet it is shown that
additional data from a simple tension test make the identification of refined
layer-specific data reliable.Comment: PB-CMBBE-15.pd