6,172 research outputs found

    Modeling peculiar velocities of dark matter halos

    Full text link
    We present a simple model that accurately describes various statistical properties of peculiar velocities of dark matter halos. We pay particular attention to the following two effects; first, the evolution of the halo peculiar velocity depends on the local matter density, instead of the global density. Second, dark matter halos are biased tracers of the underlying mass distribution, thus halos tend to be located preferentially at high density regions. For the former, we develop an empirical model calibrated with N-body simulations, while for the latter, we use a conventional halo bias models based on the extended Press-Schechter model combined with an empirical log-normal probability distribution function of the mass density distribution. We find that compared with linear theory, the present model significantly improves the accuracy of predictions of statistical properties of the halo peculiar velocity field including the velocity dispersion, the probability distribution function, and the pairwise velocity dispersion at large separations. Thus our model predictions may be useful in analyzing future observations of the peculiar velocities of galaxy clusters.Comment: This paper was published in MNRAS, 343, 1312 (2003). Owing to an error in numerical computations, some incorrect results were presented there. Erratum is to be published in MNRAS. Conclusions of the original version are unaffected by the correction. This version supersedes the original versio

    Prediction of Orbital Ordering in Single-Layered Ruthenates

    Full text link
    The key role of the orbital degree of freedom to understand the magnetic properties of layered ruthenates is here discussed. In the G-type antiferromagnetic phase of Ca2_2RuO4_4, recent X-ray experiments reported the presence of 0.5 hole per site in the dxyd_{xy} orbital, while the dyzd_{\rm yz} and dzxd_{zx} orbitals contain 1.5 holes. This unexpected t2gt_{2g} hole distribution is explained by a novel state with orbital ordering (OO), stabilized by a combination of Coulomb interactions and lattice distortions. In addition, the rich phase diagram presented here suggests the possibility of large magnetoresistance effects, and predicts a new ferromagnetic OO phase in ruthenates.Comment: 4 pages, Revtex, with 2 figures embedded in the text. Submitted to Phys. Rev. Let

    Improved Crystalline Quality of Si\u3csub\u3e1-x\u3c/sub\u3eGe\u3csub\u3ex\u3c/sub\u3e Formed by Low-temperature Germanium Ion Implantation

    Get PDF
    Improvement of crystalline quality in Si1-xGex formed by germanium ion implantation has been found. End‐of‐range defects were drastically reduced in number by lowering the substrate temperature during implantation with doses on the order of 1016 cm−2. This improvement was confirmed by electrical characterization of p‐n junctions formed in the SiGe layer as well as by transmission electron microscopy

    Microlensing of collimated Gamma-Ray Burst afterglows

    Get PDF
    We investigate stellar microlensing of the collimated gamma-ray burst afterglows. A spherical afterglow appears on the sky as a superluminally expanding thin ring (``ring-like'' image), which is maximally amplified as it crosses the lens. We find that the image of the collimated afterglow becomes quite uniform (``disk-like'' image) after the jet break time (after the Lorentz factor of the jet drops below the inverse of the jet opening angle). Consequently, the amplification peak in the light curve after the break time is lower and broader. Therefore detailed monitoring of the amplification history will be able to test whether the afterglows are jets or not, i.e., ``disk-like'' or not, if the lensing occurs after the break time. We also show that some proper motion and polarization is expected, peaking around the maximum amplification. The simultaneous detection of the proper motion and the polarization will strengthen that the brightening of the light curve is due to microlensing.Comment: 16 pages, 6 figures, accepted for publication in Ap

    Non-linear Evolution of Matter Power Spectrum in Modified Theory of Gravity

    Get PDF
    We present a formalism to calculate the non-linear matter power spectrum in modified gravity models that explain the late-time acceleration of the Universe without dark energy. Any successful modified gravity models should contain a mechanism to recover General Relativity (GR) on small scales in order to avoid the stringent constrains on deviations from GR at solar system scales. Based on our formalism, the quasi non-linear power spectrum in the Dvali-Gabadadze-Porratti (DGP) braneworld models and f(R)f(R) gravity models are derived by taking into account the mechanism to recover GR properly. We also extrapolate our predictions to fully non-linear scales using the Parametrized Post Friedmann (PPF) framework. In f(R)f(R) gravity models, the predicted non-linear power spectrum is shown to reproduce N-body results. We find that the mechanism to recover GR suppresses the difference between the modified gravity models and dark energy models with the same expansion history, but the difference remains large at weakly non-linear regime in these models. Our formalism is applicable to a wide variety of modified gravity models and it is ready to use once consistent models for modified gravity are developed.Comment: 25 pages, 8 figures, comparison to N-body simulations in DGP added, published in PR

    Invariants of Collective Neutrino Oscillations

    Full text link
    We consider the flavor evolution of a dense neutrino gas by taking into account both vacuum oscillations and self interactions of neutrinos. We examine the system from a many-body perspective as well as from the point of view of an effective one-body description formulated in terms of the neutrino polarization vectors. We show that, in the single angle approximation, both the many-body picture and the effective one-particle picture possess several constants of motion. We write down these constants of motion explicitly in terms of the neutrino isospin operators for the many-body case and in terms of the polarization vectors for the effective one-body case. The existence of these constants of motion is a direct consequence of the fact that the collective neutrino oscillation Hamiltonian belongs to the class of Gaudin Hamiltonians. This class of Hamiltonians also includes the (reduced) BCS pairing Hamiltonian describing superconductivity. We point out the similarity between the collective neutrino oscillation Hamiltonian and the BCS pairing Hamiltonian. The constants of motion manifest the exact solvability of the system. Borrowing the well established techniques of calculating the exact BCS spectrum, we present exact eigenstates and eigenvalues of both the many-body and the effective one-particle Hamiltonians describing the collective neutrino oscillations. For the effective one-body case, we show that spectral splits of neutrinos can be understood in terms of the adiabatic evolution of some quasi-particle degrees of freedom from a high density region where they coincide with flavor eigenstates to the vacuum where they coincide with mass eigenstates. We write down the most general consistency equations which should be satisfied by the effective one-body eigenstates and show that they reduce to the spectral split consistency equations for the appropriate initial conditions.Comment: 26 pages with one figure. Published versio

    Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy

    Get PDF
    We observed a 32-fold increase in the spontaneous emission rate of InGaN/GaN quantum well (QW) at 440 nm by employing surface plasmons (SPs) probed by time-resolved photoluminescence spectroscopy. We explore this remarkable enhancement of the emission rates and intensities resulting from the efficient energy transfer from electron-hole pair recombination in the QW to electron vibrations of SPs at the metal-coated surface of the semiconductor heterostructure. This QW-SP coupling is expected to lead to a new class of super bright and high-speed light-emitting diodes (LEDs) that offer realistic alternatives to conventional fluorescent tubes

    Linear response calculation using the canonical-basis TDHFB with a schematic pairing functional

    Full text link
    A canonical-basis formulation of the time-dependent Hartree-Fock-Bogoliubov (TDHFB) theory is obtained with an approximation that the pair potential is assumed to be diagonal in the time-dependent canonical basis. The canonical-basis formulation significantly reduces the computational cost. We apply the method to linear-response calculations for even-even nuclei. E1 strength distributions for proton-rich Mg isotopes are systematically calculated. The calculation suggests strong Landau damping of giant dipole resonance for drip-line nuclei.Comment: 6 pages, 1 figure, INPC 2010 conference proceding

    Cloud optical thickness and effective particle radius derived from transmitted solar radiation measurements : Comparison with cloud radar observations

    Get PDF
    A method is presented for determining the optical thickness and effective particle radius of stratiform clouds containing liquid water drops in the absence of drizzle from transmitted solar radiation measurements. The procedure compares measurements of the cloud transmittance from the ground at water-absorbing and nonabsorbing wavelengths with lookup tables of the transmittance precomputed for plane-parallel, vertically homogeneous clouds. The optical thickness derived from the cloud transmittance may be used to retrieve vertical profiles of cloud microphysics in combination with the radar reflectivity factor. To do this, we also present an algorithm for solving the radar equation with a constraint of the optical thickness at the visible wavelength. Observations of clouds were made in August and September 2003 at Koganei, Tokyo, Japan, using a PREDE i-skyradiometer and a 95-GHz cloud radar Super Polarimetric Ice Crystal Detection and Explication Radar (SPIDER). The optical thickness and effective radius of water clouds were derived from the i-skyradiometer. Then, the vertical profile of the effective radius was retrieved from SPIDER, using the optical thickness determined from the i-skyradiometer. We found that the effective radii derived by using these two instruments were in good agreement
    corecore