3,568 research outputs found

    Search for Anomalous Couplings in Top Decay at Hadron Colliders

    Get PDF
    We present a quantitative study on sensitivities to the top-decay anomalous couplings, taking into account realistic experimental conditions expected at Tevatron and LHC. A double angular distribution of W and charged lepton in the top decay is analyzed, using ttbar events in the lepton+jets channel. In order to improve sensitivities to the anomalous couplings, we apply two techniques: (1) We use a likelihood fitting method for full kinematical reconstruction of each top event. (2) We develop a new effective spin reconstruction method for leptonically-decayed top quarks; this method does not require spin information of the antitop side. For simplicity, we neglect couplings of right-handed bottom quark as well as CP violating couplings. The 95% C.L. estimated bound on a ratio of anomalous couplings reads -0.81 < f_2/f_1 < -0.70, -0.12<f_2/f_1<0.14 using 1000 reconstructed top events at Tevatron, while -0.74<f_2/f_1<-0.72, -0.01<f_2/f_1<0.01 is expected with 100k reconstructed top events at LHC, where only statistical errors are taken into account. A two-fold ambiguity in the allowed range remains when the number of events exceeds a few hundred.Comment: 21 pages, 15 figure

    New Method for Reconstructing Effective Top Quark Spin

    Get PDF
    We propose a new method for reconstructing an effective spin direction of a semi-leptonically decayed top quark. The method is simple: for instance, it does not require the spin information of the antitop quark in a ttbar event. The reconstructed effective spin is expected to be useful in hadron collider experiments. We demonstrate its usefulness in an analysis of the top decay vertex.Comment: 10 pages, 6 figures; one reference added; version to appear in Phys.Lett.

    GR@PPA 2.7 event generator for pppp/ppˉp\bar{p} collisions

    Full text link
    The GR@PPA event generator has been updated to version 2.7. This distribution provides event generators for VV (WW or ZZ) + jets (\leq 4 jets), VVVV + jets (\leq 2 jets) and QCD multi-jet (\leq 4 jets) production processes at pppp and ppˉp\bar{p} collisions, in addition to the four bottom quark productions implemented in our previous work (GR@PPA\_4b). Also included are the top-pair and top-pair + jet production processes, where the correlation between the decay products are fully reproduced at the tree level. Namely, processes up to seven-body productions can be simulated, based on ordinary Feynman diagram calculations at the tree level. In this version, the GR@PPA framework and the process dependent matrix-element routines are separately provided. This makes it easier to add further new processes, and allows users to make a choice of processes to implement. This version also has several new features to handle complicated multi-body production processes. A systematic way to combine many subprocesses to a single base-subprocess has been introduced, and a new method has been adopted to calculate the color factors of complicated QCD processes. They speed up the calculation significantly.Comment: 21 pages, no figur

    Integration of GRACE and PYTHIA

    Get PDF
    We have successfully developed a technique to integrate an automatic event-generator generation system GRACE and a general-purpose event generator framework PYTHIA. The codes generated by GRACE are embedded in PYTHIA in the created event generator program. The embedded codes give information on parton-level hard interactions directly to PYTHIA. The choice of PDF is controlled by the ordinary parameter setting in PYTHIA. This technique enables us to create easy-to-handle event generators for any processes in hadron collisions. Especially, in virtue of large capability of GRACE, we can easily deal with those processes containing many (four or more) partons in the final state, such as multiple heavy particle productions. This project is being carried out as a collaboration between the Japanese Atlas group and the Minami-Tateya group, aiming at developing event generators for Tevatron and LHC experiments

    Volume reduction of municipal solid wastes contaminated with radioactive cesium by ferrocyanide coprecipitation technique

    Get PDF
    Municipal solid wastes (MSW) with elevated concentrations of radioactive cesium (rad-Cs hereafter) have been generated in some areas of Japan in the aftermath of the Fukushima Daiichi Nuclear Power Plant (F1 hereafter) accident. Both recycling and final disposal of the contaminated MSW have become a difficult problem in the affected areas, resulting in accumulation of treated residues in the treatment facilities. The rad-Cs in MSW, especially fly ash, often showed a high leaching rate. Extraction of contaminated MSW with water or hot oxalic acid followed by selective removal of rad-Cs from the extract using ferrocyanide (Fer hereafter) coprecipitation technique could be an ultimate solution for waste volume reduction. The MSW extracts contain various metal components as well as chelating reagents like oxalic acid, and are often very saline. The composition of the extract varies widely depending on waste sources, applied treatment techniques, and rad-Cs extraction method etc. The applicability of the Fer coprecipitation technique had to be tested and validated before it could be applied for actual treatment. In this work, we applied the Fer technique and observed removal of cesium (Cs) from water and oxalic acid extracts (all spiked with rad-Cs tracer or stable Cs) of various MSW samples collected from uncontaminated areas. Finally, the Fer technique was applied on site for removal of rad-Cs in the extracts of contaminated MSW. By modifying coprecipitation conditions according to solution matrix, Cs removal rates of higher than 95 % could be obtained

    QCD event generators with next-to-leading order matrix-elements and parton showers

    Get PDF
    A new method to construct event-generators based on next-to-leading order QCD matrix-elements and leading-logarithmic parton showers is proposed. Matrix elements of loop diagram as well as those of a tree level can be generated using an automatic system. A soft/collinear singularity is treated using a leading-log subtraction method. Higher order re-summation of the soft/collinear correction by the parton shower method is combined with the NLO matrix-element without any double-counting in this method. An example of the event generator for Drell-Yan process is given for demonstrating a validity of this method.Comment: 18 pages, 6 figures, version 2: update reference [13

    Cyclooxygenase-2 overexpression correlates with tumour recurrence, especially haematogenous metastasis, of colorectal cancer

    Get PDF
    Epidemiological studies have demonstrated that nonsteroidal anti-inflammatory drugs (NSAIDs), known to inhibit cyclooxygenase (COX), reduce the risk of colorectal cancer. COX is a key enzyme in prostaglandin biosynthesis, and two isoforms of COX, COX-1 and COX-2, have been identified. Recently COX-2 has been reported to frequently overexpress in colorectal neoplasms and to play a role in colorectal tumorigenesis and tumour progression. In this study, using immunohistochemistry, we examined COX-2 expression in advanced human colorectal cancer and its correlation with clinicopathological features. COX-2 expression was observed mainly in the cytoplasm of cancer cells in all the specimens examined, but some stromal cells and endothelial cells were also stained. According to the grade of COX-2 expression of the cancer cells, patients were divided into high- and low-COX-2 expression groups. High-COX-2 expression significantly correlated with tumour recurrence, especially haematogenous metastasis. These results suggest that a selective COX-2 inhibitor can be a novel class of therapeutic agents not only for tumorigenesis but also for haematogenous metastasis of cololectal cancer. To our knowledge, this is the first report on the correlation between COX-2 overexpression and recurrence of colorectal cancer. © 2000 Cancer Research Campaig

    Markovian MC simulation of QCD evolution at NLO level with minimum k_T

    Full text link
    We present two Monte Carlo algorithms of the Markovian type which solve the modified QCD evolution equations at the NLO level. The modifications with respect to the standard DGLAP evolution concern the argument of the strong coupling constant alpha_S. We analyze the z - dependent argument and then the k_T - dependent one. The evolution time variable is identified with the rapidity. The two algorithms are tested to the 0.05% precision level. We find that the NLO corrections in the evolution of parton momentum distributions with k_T - dependent coupling constant are of the order of 10 to 20%, and in a small x region even up to 30%, with respect to the LO contributions.Comment: 32 pages, 9 pdf figure
    corecore