42 research outputs found

    CuCo2S4 deposited on TiO2: Controlling the pH Value Boosts Photocatalytic Hydrogen Evolution

    Get PDF
    Metallic spinel‐type CuCo2S4 nanoparticles were deposited on nanocrystalline TiO2 (P25Âź), forming heterostructure nanocomposites. The nanocomposites were characterized in detail by X‐ray powder diffraction (XRD), high‐resolution transmission electron microscopy (HRTEM), nitrogen sorption (BET) and UV/Vis spectroscopy. Variation of the CuCo2S4:TiO2 ratio to an optimum value generated a catalyst which shows a very high photocatalytic H2 production rate at neutral pH of 32.3 ”mol/h (0.72 mL h–1), which is much larger than for pure TiO2 (traces of H2). The catalyst exhibits an extraordinary long‐term stability and after 70 h irradiation time about 2 mmol H2 were generated. An increased light absorption and an efficient charge separation for the sample with the optimal CuCo2S4:TiO2 ratio is most probably responsible for the high catalytic activity

    Adrenomedullin and tumour microenvironment

    Get PDF
    Adrenomedullin (AM) is a regulatory peptide whose involvement in tumour progression is becoming more relevant with recent studies. AM is produced and secreted by the tumour cells but also by numerous stromal cells including macrophages, mast cells, endothelial cells, and vascular smooth muscle cells. Most cancer patients present high levels of circulating AM and in some cases these higher levels correlate with a worst prognosis. In some cases it has been shown that the high AM levels return to normal following surgical removal of the tumour, thus indicating the tumour as the source of this excessive production of AM. Expression of this peptide is a good investment for the tumour cell since AM acts as an autocrine/paracrine growth factor, prevents apoptosis-mediated cell death, increases tumour cell motility and metastasis, induces angiogenesis, and blocks immunosurveillance by inhibiting the immune system. In addition, AM expression gets rapidly activated by hypoxia through a HIF-1α mediated mechanism, thus characterizing AM as a major survival factor for tumour cells. Accordingly, a number of studies have shown that inhibition of this peptide or its receptors results in a significant reduction in tumour progression. In conclusion, AM is a great target for drug development and new drugs interfering with this system are being developed

    Suppression of tumor growth by intra-muscular transfer of naked DNA encoding adrenomedullin antagonist

    Get PDF
    We have recently reported that the intra-tumoral injection of adrenomedullin (AM) antagonist (AMA; AM (22-52)) peptides significantly reduced the in vivo growth of a pancreatic cancer cell line in severely combined immunodeficient (SCID) mice. In the present study, we examined the effects of intra-tumoral and intra-muscular transfers of naked DNA encoding AMA on the in vivo growth of cancer cell lines. We demonstrate that these treatments induce the regression of a pancreatic cancer cell line and a breast cancer cell line inoculated in SCID mice. Furthermore, CD31-positive cells disappear completely from tumor tissues, following treatment, indicating that neo-vascularization is entirely inhibited. These results suggest that the intra-tumoral or intra-muscular transfer of naked DNA encoding AMA might be a promising alternative modality for treating human cancers
    corecore