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Adrenomedullin and tumour microenvironment
Ignacio M Larráyoz, Sonia Martínez-Herrero, Josune García-Sanmartín, Laura Ochoa-Callejero and Alfredo Martínez*
Abstract

Adrenomedullin (AM) is a regulatory peptide whose involvement in tumour progression is becoming more relevant
with recent studies. AM is produced and secreted by the tumour cells but also by numerous stromal cells including
macrophages, mast cells, endothelial cells, and vascular smooth muscle cells. Most cancer patients present high
levels of circulating AM and in some cases these higher levels correlate with a worst prognosis. In some cases it has
been shown that the high AM levels return to normal following surgical removal of the tumour, thus indicating the
tumour as the source of this excessive production of AM. Expression of this peptide is a good investment for the
tumour cell since AM acts as an autocrine/paracrine growth factor, prevents apoptosis-mediated cell death, increases
tumour cell motility and metastasis, induces angiogenesis, and blocks immunosurveillance by inhibiting the immune
system. In addition, AM expression gets rapidly activated by hypoxia through a HIF-1α mediated mechanism, thus
characterizing AM as a major survival factor for tumour cells. Accordingly, a number of studies have shown that
inhibition of this peptide or its receptors results in a significant reduction in tumour progression. In conclusion,
AM is a great target for drug development and new drugs interfering with this system are being developed.
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Introduction
Adrenomedullin (AM) is a regulatory peptide that was
first isolated in 1993 from human pheochromocytoma
extracts by Kitamura et al. [1]. These authors found that
AM was able to stimulate cAMP production in human
platelets and exerted a potent and long-lasting hypotensive
activity in rats. AM is synthesized both by tumour cells
and by normal adrenal medulla cells, as well as by many
other tissues [2]. It is a circulating hormone, although it
functions also as a local paracrine and autocrine mediator
with multiple biological activities such as vasodilatation,
cell growth, regulation of hormone secretion, natriuresis,
and antimicrobial effects [2-4].
Structure of adrenomedullin
Human AM is a small hormone of 52 amino acids. It
belongs to the amylin/calcitonin gene-related peptide
(CGRP) super-family, which also includes CGRP, amylin
and intermedin, also named adrenomedullin 2 [5-7]. The
C-terminal tyrosine residue is amidated (-CONH2) and
AM contains a six amino acid ring formed by an internal
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disulfide bond between residues 16 and 21. Both struc-
tural features are essential for its biological activity.
The three-dimensional structure of AM comprises a

central α-helical region, covering approximately one
third of its total length, flanked by two disordered seg-
ments. The presence of the α-helix at the centre of AM
seems to be a general feature of the calcitonin peptide
super-family, which is important for the physiology of
these peptides and the recognition of their specific re-
ceptors [8].
Adrenomedullin gene expression and release
AM is encoded by the adm gene, which has been identi-
fied in several mammalian species and is located on hu-
man chromosome 11p15.4; consisting of four exons and
three introns, with TATA, CAAT and GC boxes in the
5′-flanking region.
The mature AM peptide is derived from preproadre-

nomedullin, which contains 185 amino acids in humans.
After cleaving the 21-residue N-terminal signaling pep-
tide, preproadrenomedullin is converted to proadreno-
medullin, which is a precursor of mature AM (amino
acids 95-146 of preproadrenomedullin) as well as of
another active peptide, proadrenomedullin N-terminal
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20-peptide or PAMP (amino acids 22-41 of preproadre-
nomedullin) [5].
AM production is mostly regulated by oxidative stress

and inflammation-related substances such as lipopolisac-
charide and inflammatory cytokines such as TNF-α and
IL-1, which increase AM secretion rate. There are
several binding sites for activator protein-2 (AP-2) and
c-AMP-regulated enhancer element. It has also been dis-
covered that there are nuclear factor-Kβ (NF-Kβ) sites
on the promoter of the AM [2]. Hypoxia is also a potent
inducer of AM expression. This overexpression is medi-
ated by transactivation of the AM promoter by hypoxia
inducible factor 1 (HIF-1) transcription factor, as well as
by posttranscriptional mRNA stabilization. Hypoxia re-
sponse elements (HREs) have been found in the pro-
moter of the human adm gene [9].

Metabolism of adrenomedullin
AM is a circulating peptide and it can be found in
plasma at a concentration of 2-10 pM in humans. AM is
also present in other biological fluids such as urine, sal-
iva, sweat, milk, amniotic fluid and cerebrospinal liquid.
In plasma, AM is specifically bound to adrenomedullin

binding protein-1 (AMBP-1), which was later identified
as complement factor H [10]. AM bound to complement
factor H cannot be detected in plasma, so it is thought
that total plasma AM could be higher than reported in
most studies. Circulating AM is rapidly degraded with a
half-life of 16-20 minutes. Matrix metalloproteinase 2
seems to be responsible for the initial degradation of
AM, which is followed by an aminopeptidase [11,12].

Adrenomedullin receptors
Specific binding sites for AM are located in many cell
types and tissues such as the heart, lungs, spleen, liver,
vas deferens, kidney glomerulus, skeletal muscle, hypo-
thalamus, and spinal cord, among others. The wide dis-
tribution of binding sites for AM is related with its great
variety of biological functions. In addition, AM is able to
bind to many areas of the brain, providing the anatom-
ical basis for the involvement of AM in the physiology
of the central nervous system [13].
The AM receptor contains a member of the 7-

transmembrane domain G-protein-coupled receptor
superfamily which is named calcitonin receptor-like
receptor (CLR). However, CLR needs the presence of
modulating proteins with a single transmembrane domain
known as receptor activity modifying proteins (RAMP).
Three RAMPs have been identified in the human genome:
RAMP1, RAMP2, and RAMP3. RAMPs bind to the CLR
in the endoplasmic reticulum promoting transport to the
plasma membrane [14].
RAMP1 transports CLR to the membrane surface as a

mature glycoprotein, and this heterodimer functions as a
CGRP receptor [14]. The CLR molecules transported by
RAMP2 and RAMP3 are core-glycosilated and function
as AM receptors (AMR); CLR/RAMP2 is known as
AMR1, whereas CLR/RAMP3 is dubbed AMR2 [5,15]. It
is hypothesized that residues present in RAMP2 and 3
but not in RAMP1 could be able to alter the pharmacol-
ogy of CLR and be responsible for making CLR/RAMP2
and CLR/RAMP3 AM receptors [16].
The expression of RAMP isoforms in a particular cell

may change between physiological and pathological con-
ditions [17], determining the degree of response to AM
and CGRP [18,19]. In physiological conditions the more
abundant isoform is RAMP2. The most robust changes in
RAMP expression levels coincide with those situations in
which plasma AM level is most elevated, as in pregnancy
or diseases like sepsis or heart failure. In those situations,
there is an elevation in RAMP3 expression, apparently in
order to decrease AM responsiveness [18].

Signal transduction mechanisms
The signal transduction pathways activated by AM
vary between species, organs, tissues, and cells. How-
ever, there are three main signaling pathways whereby
AM exerts its actions: cAMP, Akt, and mitogen activated
protein kinase (MAPK)-extracellular signal regulated-
protein kinase (ERK).
The main signal transduction pathways activated by

AM seems to be the adenylyl cyclase/cAMP system. In
many cell types, AM and CGRP receptors are coupled to
Gs proteins that activate adenylate cyclase and increase
intracellular levels of cAMP [5]. In bovine aortic endo-
thelial cells and vascular smooth muscle cells (VSMC)
the accumulation of cAMP causes the activation of pro-
tein kinase A (PKA) which in turn increases calcium
(Ca2+) efflux leading to relaxation of the vascular cells
[20]. Moreover, it was confirmed that AM can induce
Ca2+ mobilization independently of cAMP levels. AM
activated phospholipase C through its specific receptor
and accelerated inositol-1,4,5-P3 formation to stimulate
Ca2+ release from the endoplasmic reticulum intracellu-
lar store. In addition, the activation of phospholipase C
is also involved in ion channel opening [20,21]. However,
other studies have shown that AM administration does
not have any effects in intracellular Ca2+ concentration
and even decreases Ca2+ content in cultured human
umbilical vein endothelial cells (HUVECs) [22] or in
porcine coronary arteries [23]. These results suggest that
the regulation of Ca2+ mobilization by AM may depend
on the cell type and physiological context.
Intracellular Ca2+ increases, in response to AM, caused

activation of nitric oxide (NO) synthase and NO release
leading to relaxation of cardiac myocytes [24]. AM acti-
vation of NO pathway has a very important role in the
regulation of the cardiovascular system by regulating
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blood-flow [25], having a cytoprotective action against
ischemia/reperfusion injury and against myocardial
ischemia-induced arrhythmias in rats [26]. Further-
more, it has been demonstrated that AM inhibited
endothelial cell apoptosis through a NO-dependent
pathway [27]. Some authors postulate that NO prevents
apoptosis by S-nitrosylating caspases [28-30].
AM has been shown to activate the PI3K/Akt pathway

in vascular endothelial cells where it regulates many
steps such as vasodilation, cell survival, proliferation, mi-
gration and vascular cord-like structure formation [31].
The specific role of AM in the multistep process of
angiogenesis is regulated via a mechanism that requires
the activation of the AMR1 and AMR2 receptors [32].
AM also acts directly on myocardium by the presence of
CLR in myocytes, where it enhances neovascularization,
induces cardioprotective effects and exerts antiapoptotic
effects through the PI3K-dependent pathway after ische-
mia/reperfusion [33].
The role of AM in growth and mitogenesis has led to

investigate the regulation of MAPK by AM. AM appears
to either stimulate or inhibit cell proliferation depending
on the particular cell type. AM signalling directly pro-
motes endothelial cell growth and survival through acti-
vation of MAPK/ERK downstream signalling pathways
[34]. Under serum deprivation, AM promotes DNA synthe-
sis and cell proliferation in VSMCs [35,36]. These responses
are mediated by p42/p44 MAPK activation. Interestingly, in
glomerullar mesangial cells AM causes an opposite effect
by increasing apoptosis during serum deprivation [37]. Ac-
tivation of MAPK and other kinases such as cAMP-PKA,
JNK and protein phosphatase 2A (PP2A) have been pro-
posed to mediate the proapoptotic effect of AM in mesan-
gial cells. On the other hand AM protects malignant cells
from hypoxia-induced cell death by up-regulation of Bcl-2
in an autocrine/paracrine manner [38].

Physiological activities of adrenomedullin
All signal mechanisms in which AM is involved are the
basis of this peptide’s extensive repertoire of biological
functions such as vasodilation, cellular proliferation,
apoptosis modulation or inflammatory regulation, among
others.
The main role played by AM in mammalian develop-

ment has become apparent following the generation of
different knockout (KO) models. In adm gene KO mice,
in which the expression of AM and PAMP are sup-
pressed, the null phenotype is embryonically lethal due
to the scarcity of placental vascularization, malformation
of the basement membrane in the aorta and cervical
arteries, detachment of the endothelial cells from the base-
ment structure, and the presence of edema [39]. Very re-
cent studies have confirmed these results, demonstrating
that locally produced AM in the trophoblast binucleate
cells of the bovine placenta may play a crucial role in regu-
lation of placental vascular and cellular functions during
pregnancy, especially during transition from the mid to
late gestation period [40]. KO mouse models in which
only AM expression, but not PAMP expression, is affected
are also embryonic lethal between embryonic day 14
(E14.5) and embryonic day 15 (E15.5) [41]. Thus, AM may
be intimately related with embryonic development and
pregnancy [42,43].
A gene-targeted KO model of the CLR gene, Calcrl,

demonstrates that Calcrl is also essential for embryo
survival. Calcrl-/- pups are not viable, the embryos die be-
tween E13.5 and E14.5 of gestation and they exhibit a very
similar phenotype to AM-/- and AM/PAMP-/- mice [44].
In models of mice lacking RAMP2 the results are

similar to the ones shown above. RAMP2-/- embryos
die in utero at midgestation due to severe deform-
ation, vascular fragility, severe edema and hemorrhage
[45]. Very recent studies with endothelial cell-specific
RAMP2 KO mice (E- RAMP2-/-) have confirmed that
the AM-RAMP2 system is a key determinant of vascu-
lar integrity and homeostasis from prenatal stages
through adulthood [46].
Surprisingly, a complete absence of RAMP3 has no ef-

fect on survival. RAMP3-null mice appear normal until
old age (9-10 months), at which point they have less
weight than their wild-type littermates [47]. These re-
sults provide support to the hypothesis that RAMP2 and
RAMP3 have distinct physiological functions in embryo-
genesis, adulthood, and old age.
To continue with the study of the lack of AM in adult tis-

sues and organisms, tissue-specific conditional KO models
have been generated using Cre/loxP technology [48].
In the adult organism, AM has been located in many

cell types and in most tissues throughout the body [49],
including the nervous system and related structures,
cardiovascular system, endocrine organs, digestive tube,
excretory system, respiratory system, reproductive tract
and integument, among others.
AM has a variety of biological actions which are of

potential importance for cardiovascular homeostasis,
growth and development of cardiovascular tissues and
regulation of body fluid [50-53]. Systemic AM adminis-
tration has demonstrated that this peptide reduces arter-
ial pressure, decreases peripheral vascular resistance,
and increases heart rate and cardiac output [54-57].
Moreover, AM and PAMP function as potent angiogenic
agents [58], are necessary to maintain the integrity of
the mucous membrane’s microvasculature [46], and pro-
mote a faster healing of epithelial wounds [59-61]. AM
binds to specific receptors in endothelial cells and elicits
endothelium-dependent vasorelaxation mediated by NO
[62], endothelium-derived hyperpolarizing factor [63],
and/or vasodilatory prostanoids [64].
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AM exerts a tight control on renal function and body
fluid volume [65,66], regulating the hypothalamic-pituitary-
adrenal axis at all levels [67].
AM regulates hormone secretion in many tissues and

organs. Levels of this peptide have effects in the
hypothalamic-pituitary-adrenal axis as shown above
[67]. In addition, AM is synthesized in pancreatic
polypeptide-producing F cells of the pancreatic islets
and AM receptors are expressed in insulin-producing
β-cells [68]. Several studies have shown that endogen-
ous AM tonically inhibits insulin secretion [68,69].
In the digestive system, AM immunoreactivity is

widely distributed in the mucosal and glandular epithelia
of the stomach, esophagus, intestine, gallbladder, bile
duct and acini of the pancreas and salivary glands
[70]. AM is a potent inhibitor of basal gastrin-
stimulated HCl secretion [71].
AM and its receptors are abundantly expressed in the

central nervous system and its cellular components
[70,72]. It plays an important role in the regulation of
specific blood-brain barrier properties [73], it also in-
creases the preganglionic sympathetic discharges [74],
and it exerts several neuroprotective actions against is-
chemic damage [75]. In addition, relatively recent studies
suggest that AM may be involved in the neuroendocrine
response to stress and nociception [76,77].
Finally, AM has been found in all epithelial surfaces

which separate the external and internal environment
and in all body secretions [78]. This wide distribution
suggests the possibility that AM has an immunity-
related function. It has been proven that both AM and
PAMP display potent antimicrobial action against Gram-
positive and Gram-negative bacteria [3].

Adrenomedullin and disease
Elevation of AM levels in plasma has been observed for
a variety of cardiovascular disorders. Accumulating evi-
dence supports a compensatory role for AM in heart
failure [79] and myocardial infarction [80]. It has been
established that plasma AM levels increase in patients
with heart failure in proportion to the severity of the dis-
ease [81]; and they are also increased during acute phase
of myocardial infarction reaching its maximum on day
2–3 and returning to baseline after about 3 weeks [80].
Furthermore, recent studies suggest that plasma AM
level is an independent prognostic indicator of heart fail-
ure [55,82] and AM exerts a protective action against
ischemia-reperfusion injury after stroke [55]. It is well
established that AM also protects against ischemia-
reperfusion injury in other organs, such as the kidney
[83] or the brain [75].
AM was detected in macrophages found within the

atherosclerotic plaque [84]. Plasma AM is increased in
patients with chronic ischemic stroke and correlates
with the extent of carotid artery atherosclerosis [85]. In
theory, AM could inhibit atherogenesis due to its inhibi-
tory effect on migration and proliferation of vascular
smooth muscle cells, inhibition of endothelial cell apop-
tosis and anti-inflammatory activity.
Elevation of plasma AM concentration is also observed

in patients with primary arterial hypertension and is
higher in individuals with complications of hypertension,
such as left ventricular hypertrophy and nephrosclerosis
[86]. It is suggested that the up-regulation of cardiac
AM system in hypertension is a protective mechanism
decreasing myocardial overload due to vasodilatory and
natriuretic properties of AM, as well as limiting further
myocardial hypertrophy and remodelling [87].
Plasma AM concentration is increased, whereas urinary

AM excretion is decreased in various types of glomerulo-
nephritis [88]. In addition, plasma AM progressively in-
creases in patients with chronic renal failure [89].
In septic shock patients, a marked elevation of AM

blood levels has been reported, probably as a defensive
action [90-92]. However, excessive AM release during
septic shock may provoke adverse effects such as
hypotension which may threaten the patient’s life [3].
AM also plays a role in primary and secondary pul-

monary hypertension. Very recent studies in rats with
pulmonary hypertension induced by high blood flow
suggest that AM exerts a protective action in the devel-
opment of this pathology, by inhibiting pulmonary pro-
collagen synthesis and alleviating pulmonary artery
collagen accumulation [93].
Furthermore, AM has emerged as a novel and promis-

ing therapy for digestive pathologies related with inflam-
mation such as gastric ulcers [94] and inflammatory
bowel diseases [95,96]. This is closely related with the
local and systemic anti-inflammatory actions that AM is
able to exert [97,98]. For example, it has been demonstrated
that AM inhibits the secretion of pro-inflammatory cyto-
kines when it is released to the medium by peripheral blood
monocytes [5] and plays a role in the evolution of Th1/Th2
cytokines balance, decreasing pro-inflammatory cytokines
levels (IL-6, IL-10, TNF-α, IFN-γ) [99-101]. In addition to
the regulatory role on immune cells, AM also decreases
endothelial permeability, thus reducing the formation of in-
flammatory exudates [5].
The existence of AM in pancreatic islets and its inhibi-

tory effect on insulin secretion suggest that AM may be
involved in the pathogenesis of diabetes mellitus. In type
1 diabetes, plasma AM is increased only in patients with
microangiopathy. Increased AM may result from endo-
thelial activation and/or impaired renal clearance in sub-
jects with diabetic nephropathy [102]. This suggests that
increased AM in type 1 diabetes is a consequence of the
disease rather than a causal agent. In humans, the levels
of circulating AM are clearly elevated in patients with
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type 2 diabetes when compared to normal controls
[103,104]. In addition, AM has emerged as a possible
biomarker for early diagnosis in pancreatic cancer-
induced diabetes [105].
AM is also involved in many eye pathologies. AM

levels in the plasma, vitreous fluid samples and fibrous
membrane tissues are all significantly elevated in pa-
tients with proliferative diabetic retinopathy compared
with control subjects [106]. AM concentration in vitre-
ous fluid is markedly increased in patients with prolifer-
ative vitreoretinopathy, the most common complication
of retinal detachment originating from the proliferation
of retinal pigment cells [107].

Adrenomedullin levels in cancer patients
There are now many studies that show an association
between AM expression and cancer. Initially, these were
predominantly studies where plasma AM concentra-
tions were measured in patients suffering from differ-
ent tumour types and compared with healthy patients.
These tumours included bronchial neuroendocrine
tumour, clear cell renal cell carcinoma, midgut tumour,
osteosarcoma, pancreatic adenocarcinoma, pancreatic insu-
linoma, aldosterone-producing adenoma, pheochromocy-
toma, pituitary adenoma, and plexiform neurofibroma
[108-118] and there were significant increases of AM levels
in all cancer patients.
Interestingly, in patients with osteosarcoma, insulinoma,

pheochromocytoma, and primary aldosteronism due to
adenoma, elevated blood AM levels decreased following
surgery and returned to normal [109,111,113,114], indicat-
ing that the tumour was the main source of these exces-
sive AM levels. However, plasma AM levels of patients
after 4–5 weeks of surgery of clear cell renal cell carcin-
oma and of other kidney tumours were similar to pre-
surgery levels. Therefore, plasma AM is not suited as a
tumour marker for this disease [118].
Nowadays with the accessibility of molecular techniques,

AM mRNA and/or protein expression have also been
determined in different tumour types and compared with
normal tissue, normal-looking tissue adjacent to the
tumour, or with other related no tumoural and pathological
tissues. Several clinical studies suggest that AM is over-
expressed in numerous tumours including colorectal can-
cer, bladder urothelial cell carcinoma, chromophobe renal
carcinoma, clear-cell renal carcinoma, osteosarcoma,
pancreatic adenocarcinoma, insulinoma, ovarian car-
cinoma, endometrial cancer, leiomyoma, glioma, glio-
blastoma, neuroblastoma, ganglioneuroblastoma, pituitary
adenoma (ACTH-secreting), somatotropinoma, astrocy-
toma, hepatocellular carcinoma, non-small cell lung car-
cinoma, squamous cell carcinoma, adenocarcinoma of the
lung, bronchial neuroendocrine carcinoma, midgut neuro-
endocrine carcinoma, pheochromocytoma, aldosterone-
producing adenoma, breast cancer, intraocular or orbital
tumours, and melanoma, as shown in Table 1 [108-110,
116,118-144]. However, AM expression in the anterior
pituitary is diminished in tumours as compared to the nor-
mal gland [145]. On the other hand, as described by Letizia
et al. [112], blood AM concentrations in control patients
was low as compared to the setting of Cushing disease due
to pituitary adenoma [112]. These data could be interpreted
by an increased release of AM from the secretory granules
of the pituitary into circulation. In prostate, no difference
on the expression of AM was detected between benign epi-
thelial cells adjacent to prostate adenocarcinoma lesions
and tumour [146].
In most tumours a high AM mRNA expression corre-

lated with high protein expression. However, in endometrial
cancer tissues and chromophobe renal carcinoma, although
AM mRNA levels were high, the protein expression was
mild [121,125], indicating complex post-transcriptional
regulation.
Furthermore, in some tumours it is possible to correl-

ate plasma levels and expression of AM with disease
progression. Plasma levels and AM expression of bron-
chial neuroendocrine carcinomas and midgut neuroen-
docrine carcinomas correlate with tumour progression
[108]. In breast cancer, AM plasma concentrations cor-
relate with the presence of lymph node metastasis [144].
AM expression is highly correlated with the degree of
malignancy and metastasis of osteosarcoma [109]. In
patients with leiomyomas, high AM expression is associ-
ated with increased vascular density [126]. Epithelial ovar-
ian cancer patients with high AM expression showed a
higher incidence of metastasis, larger residual size of tu-
mours after cytoreduction, and shorter disease-free and
overall survival time [123]. AM gene expression levels
may play a key role in the biology of epithelial ovarian can-
cer and may define a more aggressive tumour phenotype
[124]. However, recent studies performed in ovarian can-
cer patients by Baranello et al. found high expression
levels of AM as a positive prognostic factor [149]. In hepa-
tocellular carcinoma, AM expression was positively corre-
lated with invasion and progression [132,133]. Elevated
AM mRNA was associated with high Gleason scores in
prostate cancer [153]. High AM mRNA levels were as-
sociated with an increased risk of relapse in patients
who underwent surgery for localized clear cell renal
and colorectal carcinoma [121,147]. In colorectal car-
cinoma, AM mRNA levels are also a significant factor
for poor prognosis and incidence of liver metastasis
[147]. The expression of AM is associated with mela-
nomagenesis in melanoma patients [140]. AM mRNA
in neuroblastoma is linked to tumour differentiation
[143]. The correlation of AM expression and the grade
of glioma supports the hypothesis that AM may par-
ticipate in the progression of the tumour [128].



Table 1 Expression of AM and AM receptors in tumours and their role on disease progression

Cancer type AM in
plasma*

AM expression Receptor expression DP** References

Breast carcinoma presence Prot lymph node
metastasis

[138,144]

Bladder urothelial cell
carcinoma

>mRNA/Prot [120]

Chromophobe renal
carcinoma

>mRNA [121]

<Prot

Clear-cell renal carcinoma >mRNA CLR and RAMP2 [118,121]

Prot

Colorectal carcinoma >mRNA >CLR, RAMP2, RAMP3 progression [119,147,148]

>Prot

Midgut tumour > progression [108]

Anaplastic astrocytoma <mRNA [128,131]

Glioma >mRNA progression [127]

Glioblastoma >mRNA CLR, RAMP2 and
RAMP3

[121,128,131]

Hepatocellular carcinoma >mRNA invasion and
progression

[132,133]

>Prot

Intraocular or orbital
tumours

>mRNA [139]

Leiomyoma >Prot [126]

ganglioneuroblastoma >Prot [129]

Neuroblastoma >mRNA differentiation [129,143]

>Prot

Bronchial neuroendocrine
tumour

> progression [108]

Small cell lung carcinoma <mRNA [134,141]

Non-small cell lung
carcinoma

mRNA immunoreactivity was
essentially weak

[134,141]

Squamous cell carcinoma
of the lungs

<mRNA [134,141]

Adenocarcinoma of the
lung

mRNA [134,141]

Osteosarcoma > >mRNA / Prot metastasis [109]

Ovarian carcinoma > mRNA / Prot over-all survival [123,124,142]

Positive Prognostic
Factor

[149]

Endometrial carcinoma >mRNA progression [125,150]

<Prot

Pancreatic adenocarcinoma > >AM &CLR mRNA / Prot CLR, RAMP1 and
RAMP2

[110,116,122,151]

Pancreatic insulinoma > >Prot [110,111]

Adrenocortical tumours > mRNA [113,135,136]

Prot no detected

Pheochromocytoma > mRNA CLR, RAMP1, RAMP2
and RAMP3

[114,117,129,135-137,152]

>Prot

Pituytary adenomas > >Prot progression [112,130,136,145]

Plexiform neurofibroma > [115]
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Table 1 Expression of AM and AM receptors in tumours and their role on disease progression (Continued)

biomarker of
transformation

Somatotropinoma >mRNA Knerr et al., [131])

Prolactinoma mRNA

meningiomas mRNA

Prostate mRNA high Gleason scores [146,153]

adenocarcinoma Prot

Skin carcinomas Prot > CLR, RAMP2, and
RAMP3

[78,140]

*>:higher plasma AM concentration in cancer patients than in healthy controls.
**DP: Correlation of AM with disease progression.
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There is significant evidence for the association of the
expression of AM and its receptors with cancer. AM
and CLR mRNA levels were higher in pancreatic adeno-
carcinoma tissues compared to normal pancreatic tissues
[116]. The expression levels of AM, CLR, RAMP2 and
RAMP3 in human melanoma were higher than in con-
trol tissues [140]. Tissue microarray analysis of human
colorectal tumours revealed a clear increase of AM,
CLR, RAMP2, and RAMP3 staining in lymph nodes and
distant metastasis when compared with primary tumours
[119]. Recently, new cancer risk markers are being devel-
oped. Cheung et al demonstrated that carriers of a single
nucleotide polymorphism (SNP), rs4910118, had signifi-
cantly lower levels of circulating AM than homozygotes
for the more common allele [154]. In agreement with
this, Martinez-Herrero et al. described that carriers of
the rs4910118 SNP have a 4.6-fold lower risk of develop-
ing cancer than homozygotes for the major allele [155].
Midregional -proadrenomedullin (MR-proAM) is a stable

and reliable surrogate marker for AM release levels. MR-
proAM was measured in plasma from persons without
cancer prior to the baseline exam. During the follow-up
median period of 14 years diverse cancer events occurred.
In this context, MR-proAM predicts later development of
cancer in males, particularly in younger males [156].

Adrenomedullin and tumour microenvironment
There is an increasing body of evidence suggesting that
malignant growth encompasses several processes includ-
ing increase in growth signals, angiogenesis and metasta-
sis, inhibition of apoptosis, and others [157-159].
Although AM does not cause cancer by itself it can

promote its advance through different mechanisms. In
addition, known carcinogens such as cigarette smoking
can increase AM expression through activation of aryl
hydrocarbon receptor (AHR), and blockade of AM can
decrease tobacco-induced tumour growth [160]. AM has
been shown to be strongly up-regulated in several differ-
ent tumour types, especially when subjected to hypoxic
environments. AM is involved in tumour initiation and
progression by promoting cell proliferation, angiogen-
esis, change of phenotype, and the inhibition of apop-
tosis [161-164]. In the last years, numerous studies have
appeared showing a relation between AM expression
and cancer. In most of them, the expression (either
mRNA and/or protein) of AM has been compared be-
tween normal tissue and different tumour types. In gen-
eral, the reports show that AM is over-expressed in
tumours such as renal cell carcinoma, some endocrine-
related tumours, hepatocellular carcinoma, non-small
cell lung carcinoma, and others [19,132,134,165-168].
Interestingly, there are some reports of decreased ex-
pression of AM in human pituitary adenomas in com-
parison with nontumoural adenohypophyses [145].

Adrenomedullin expression in cancer cells and its role on
malignant growth
Over the last years, numerous authors have reported the
regulatory properties that AM possesses on the prolifer-
ation of a wide variety of cancer cells. In 1996, Miller
and cols analyzed the expression of AM mRNA by RT-
PCR in 20 human normal tissues and 48 tumour cell
lines [166]. The authors found that 95% of normal and
tumour cells expressed the mRNA for the peptide [166].
Tumour cell lines evaluated included small cell lung
carcinomas, non-small cell lung carcinomas, breast,
nervous system (glioblastoma, neuroblastomas), ovarian,
prostate, adrenal, chondrosarcoma, and chronic mono-
cytic leukemia [166]. These data have been replicated on
different tumour cell lines such as pancreatic cell lines
(PANC1, L3.6, HPAFII, SU86.86) [110,116,169], gliomas
[170,171], prostate cancer cell lines [162,172-175], ovarian
cancer [149,176,177], osteosarcoma [109], renal carcinoma
[121,178], multiple myeloma [179], bladder urothelial cell
carcinoma [120], pituitary adenomas [145], colorectal can-
cer [119,147,148], breast cancer [144], endometrial cancer
[38], hepatocellular carcinoma [132] and others.
It is noteworthy to mention that, in some tumours,

RAMP3 is expressed alongside RAMP2 while in others
only RAMP2 is present. In renal tumours, for instance,
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RAMP2 was expressed in the tumour cells themselves,
while RAMP3 elevation was found in inflammatory cells
associated with the tumour, highlighting the importance
of the interaction of the tumour with the microenviron-
ment [121].
Interestingly, Lombardero and cols reported that the

expression of AM measured by immunohistochemistry
in various hormone-secreting pituitary adenomas was
found to be diminished as compared to nontumoural ad-
enohypophyses [145], although this fact may represent a
faster disregulated secretion of the peptide to the blood
stream.

Adrenomedullin expression is increased under hypoxic
conditions
Focal areas of hypoxia are inherent to the environment
of solid tumours [180,181]. Decreased oxygen availability
is one of the driving forces of cancer survival and pro-
gression. When tumour cells are exposed to hypoxic
conditions, an oxygen-sensing mechanism, based on the
hypoxia-inducible factor-1 (HIF-1), mediates the expres-
sion of a group of genes that help tumour cells to
survive [9,182,183]. Several studies have addressed the
regulation of AM (and its receptors) expression under
hypoxic conditions in a variety of tumour tissues and
cell lines. The first authors to report an induction of
AM in a tumour cell line exposed to hypoxia were
Nakayama and cols in 1998 [184]. Human colorectal
carcinoma cells exposed to a reduced oxygen tension
showed a time-dependent increase in AM mRNA and
peptide expression. Later on, the hypoxia-induced up-
regulation of AM expression was described in a variety
of human tumour cell lines from lung, breast, ovary, pros-
tate, bone, blood [9], multiple myeloma [179], bladder
urothelial cell carcinoma [120], colorectal carcinoma
[119,147,148] and hepatocellular carcinoma [132], among
others. The first proof that this increased expression was
mediated by HIF-1 was provided by Garayoa and cols [9]
using HIF-1α and HIF-1β knockout cell lines.
As an example to illustrate the effect of AM in hyp-

oxic environments we can compare the role that AM
plays in the pathophysiology of pilocytic astrocytomas
and glioblastomas. Pilocytic astrocytoma is a slowly
growing tumour where preexisting blood vessels are suf-
ficient to provide enough oxygen and to ensure tumour
growth [171]. Glioblastoma, however, is a rapidly grow-
ing tumour where normal blood supply is not sufficient,
leading to necrosis and hypoxia [171]. Real-time quanti-
tative RT-PCR was used to study expression of AM,
RAMP2, RAMP3, and CLR in pilocytic astrocytoma and
glioblastoma. Interestingly, although there were not
differences in RAMP2 or RAMP3 expression, AM mRNA
expression was induced in glioblastoma whereas it was
barely detectable in pilocytic astrocytoma when subjected
to hypoxic conditions. Furthermore, AM and VEGF mRNA
expression were highly correlated, supporting the view that
AM may function as an autocrine/paracrine growth factor
for glioblastoma cells subjected to hypoxia [171].

Adrenomedullin is a survival factor for tumour cells
Adrenomedullin is able to reduce apoptosis of both
endothelial and tumour cells. AM-overexpressing endo-
metrial tumour cells, prostate cancer cells, or breast car-
cinoma cells present reduced levels of proapoptotic
proteins such as fragmented PARP, Bax, and activated
caspases, resulting in lower level of induced-apoptosis
compared with control cells [165,172,185]. However, the
up-regulation of AM in tumours can be used to design
strategies to treat these types of cancer. For instance,
AM expression up-regulated the expression of IL13 re-
ceptor α2 which can be used to increase the sensitivity
to IL13PE cytotoxin (consisting of IL-13 and a truncated
form of Pseudomonas exotoxin) [175].
AM can stimulate cell growth and inhibit apoptosis

in a variety of tumour cells, including prostate cancer
[172,174,175], ovarian cancer [149,176], osteosarcoma
[109], renal carcinoma [178], bladder carcinoma [120],
breast cancer [186], colorectal cancer [119,148], gliomas
[170], and hepatocellular carcinoma [132].
Thus, when AM was overexpressed in the endometrial

cancer cell line RL95.2 a marked growth increase was
seen in response to hypoxia-induced apoptosis [38].
Similarly, T47D and MCF-7 breast tumour cell lines
challenged with serum-free conditions were able to
maintain cell proliferation only in the presence of AM
[165]. Also, the implication of AM in the survival of U87
glioblastoma cells was demonstrated by intratumoural
administration of an anti-AM antibody in xenografted
mice which resulted in a 70% decrease in xenograft
weight and density of tumour vessels.
The role of AM in prostate cancer cell pathophysi-

ology seems to be controversial. Depending on the cell
line used (PC-3, DU145, or LNCap) and the insult
(etoposide or serum deprivation) the effect of AM on
proliferation/apoptosis differs [172,173]. After serum
deprivation, AM prevented apoptosis in DU145 and PC-
3 cells, but not in LNCaP cells [172,173]. However, after
treatment with etoposide, AM prevented apoptosis in
PC-3 and LNCaP cells, but not in DU145 cells [172,173].
Surprisingly, although PC-3 prostate cancer cells over-
expressing AM generated smaller tumours in vivo when
injected in nude mice [172], blockade of AM by an spe-
cific antibody in DU145 prostate cancer cells induced a
clear regression of tumour growth and metastasis in a
xenograft mouse model [174].
As noted above, the presence of AM peptide, as well

as AM receptors, has been described in ovarian cancer
cells [178]. Silencing of the AM gene inhibited the
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proliferation and increased the chemosensitivity of
HO8910 cells by downregulation of Bcl-2 and p-ERK, as
described for other cancer cell types [176]. However,
other authors have reported that AM effect in ovarian
cancer cells is weak as revealed by proliferation assays
and cell cycle analysis performed under stressing condi-
tions, such as serum starvation and/or hypoxia [149].
Baranello and cols found that AM was a survival factor
for HEY cells but not for A2780 or OVCAR-3 ovarian
cancer cells. Furthermore, a clinical study revealed that
high expression of AM was linked to a positive outcome,
suggesting that the use of AM antagonists could be dele-
terious in the treatment of ovarian cancer patients [149].
Although the expression of AM, CLR, RAMP1, and

RAMP2 mRNA has been reported in several pancreatic
cancer cells, RAMP3 mRNA expression could only be
found in 1 of 5 cell lines studied [116]. These observa-
tions, and the strong colocalization of CLR with
RAMP1/RAMP2 but not with RAMP3, indicate that
RAMP1/2 but not RAMP3 are the main coreceptors for
CLR in pancreatic adenocarcinoma [116]. Intratumoural
injection of AM antagonist peptides or transfer of naked
DNA encoding AM antagonists induce the regression of
a pancreatic cancer cell line and a breast cancer cell line
in a mouse xenograft [169]. In addition to its role regu-
lating proliferation/apoptosis, the blockade of AM action
seems to also involve a reduction in tumoural neovascu-
larization, which is entirely inhibited in AMA (adreno-
medullin antagonist)-treated mice [169].
The role of AM in cell growth and invasion in human

colorectal tumours has also been explored recently.
Human colon carcinoma cells (HT-29, HCT116, DLD1,
and SW480) express AM, CLR, RAMP2, and RAMP3,
and the expression of AM is increased under hypoxic
conditions [119,147,148]. Addition of synthetic AM to
tumour cells in culture stimulated cell proliferation and
invasion which could be reversed by co-incubation
with an AM antibody or an AM antagonist [119,148].
Furthermore, AM antibody treatment significantly re-
duced the growth of HT-29 tumour xenografts in mice
[119]. These data seem to correlate well with clinical
data where AM has been described as an independent
prognostic factor for colorectal cancer [147].
In recent years numerous xenografted tumour models

have been used to provide new insights in the under-
standing of AM’s role in tumour growth in vivo. Inter-
estingly, vascular density or directed growth of blood
vessels measured in these xenograft models correlates
well with AM expression. Thus, human endometrial,
breast, lung or pancreatic tumour cell lines overexpress-
ing AM show an increase in blood vessel density
[38,165,169,187,188], while colorectal, prostate, and renal
carcinoma cells with decreased AM availability resulted in
blood vessel density reduction [119,148,174,189]. Similar
results were obtained when xenografting human glioblast-
oma cells, who express high basal levels of AM. Both
density of blood vessels and cell growth were decreased
when an antibody against AM was administered intratu-
mourally [128].
All these data taken together support the idea that

AM functions as a potent autocrine/paracrine growth
factor for tumour cells and demonstrate that reduction
of endogenous AM, either pharmacologically or by gene
therapy, can potentially impair tumour growth in vivo.
The collective findings point out that the autocrine loop
formed by AM and its receptors plays a major role in
tumour formation and progression, and that it may be a
target for new treatments against malignant diseases.

Adrenomedullin in extra-tumoural components
Stromal factors interact with cancer cells to establish a
microenvironment that supports tumour growth and
survival. AM is an autocrine/paracrine peptide produced
by stromal and cancer cells to support such a micro-
environment [149]. AM enhances blood and lymphatic
angiogenesis, providing necessary nutrients and oxygen
to the tumour cells to grow and, eventually, to dissemin-
ate [9,34,149]. The main sources of AM are the vascular
endothelium and, usually, the tumour cells themselves,
although other types of cells such as mast cells, macro-
phages and fibroblasts can also produce the peptide
[138,140]. The role of AM in tumourigenic angiogenesis
has been studied using several in vitro, xenograft, and
knockout mouse models [38,165,168,185]. AM can regu-
late the tumour microenvironment by promoting prolif-
eration and migration of endothelial cells, reducing the
activity of the immune system by reducing cytokine se-
cretion [3], and inhibiting the complement pathway
[168,183]. Experiments using AM knockout mice demon-
strated that AM is essential for vascular morphogenesis in
normal animals [39,188,190], as well as in tumours. In
fact, AM is not only able to enhance bone marrow-
derived mononuclear cell differentiation into endothelial
cells but also it is important for the formation of mature
vessels [191].

Adrenomedullin and cancer treatment
Several strategies have been proposed to inhibit AM-
induced tumour growth, including AM mRNA rybozyme
which modulates AM expression, and other approaches
targeting AM binding to its receptor for example anti-AM
blocking antibodies, small nonpeptide molecules, receptor
antagonists, truncated peptides, e.g. AM22–52 (AMA)
and PAMP12-20 [167,192].
Various studies using human tumour xenografts in

immuno-deficient mice have shown that lowering AM
levels reduces tumour growth. For example, growth of sar-
coma tumours was slower when injected in heterozygotic
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AM knockout mice as compared to their wild type coun-
terparts. In addition, treatment of tumours with a com-
petitive inhibitor of AM (AMA) resulted in tumour
reduction [193]. Besides, tumour weight was reduced fol-
lowing intra-tumoural injection of an AM antagonist
(AMA) in mouse models of pancreatic [169,187], mam-
mary [169], and skin [140] cancer cell growth. Further-
more, a single intra-tumoural or intra-muscular transfer
of naked DNA-encoding AMA suppresses renal cell car-
cinoma growth [189].
Moreover, targeting AM receptors (AMR) with sys-

temic delivery of neutralizing antibodies inhibits growth
of human tumour xenografts in mice. Antibodies against
AMR significantly reduced the growth of glioblastoma
[53,128], lung [53], prostate [174], colon tumours [53,119],
and melanoma [140] growth in vivo. Although some au-
thors have raised concerns about the specificity of the
antibodies against the receptors [194], the original authors
performed pre-absorption tests that resulted in successful
band suppression showing at least immunological specifi-
city against synthetic peptides used as antigens [32,53].
Nevertheless, more studies from other laboratories are
needed to completely characterize these antibodies and to
confirm originally obtained results.
Other strategies targeting AM includes RNA interfer-

ence that reduced the growth of human bladder urothe-
lial cell carcinoma [120]. In addition, the peptide
fragment PAMP (12-20) diminished tumour growth in a
xenograft model using lung carcinoma [195].
Obviously none of these potential treatments has

undergone pre-clinical and clinical testing and nothing
is known about potential side effects and/or toxicity in
humans. Therefore we must be careful with the inter-
pretation of previous data until clinical trials have been
performed.

Conclusion
All these studies support the idea of AM as a survival
factor for tumour cells, that can be produced either by
the tumour itself or by a number of stromal cells sur-
rounding the tumour. In general, AM expression is up-
regulated by hypoxia, a common occurrence in tumours,
and the excessive production of this peptide results in
poorer prognosis for the patients. Therefore, new ther-
apies based on the blockade of the AM autocrine/para-
crine system are been developed and some of them are
very effective in animal models. It remains to be seen
whether this efficacy would persist in clinical trials.
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