129 research outputs found
Ghost Condensates and Dynamical Breaking of SL(2,R) in Yang-Mills in the Maximal Abelian Gauge
Ghost condensates of dimension two in SU(N) Yang-Mills theory quantized in
the Maximal Abelian Gauge are discussed. These condensates turn out to be
related to the dynamical breaking of the SL(2,R) symmetry present in this gaugeComment: 16 pages, LaTeX2e, final version to appear in J. Phys.
Two loop effective potential for < A^2_\mu > in the Landau gauge in quantum chromodynamics
We construct the effective potential for the dimension two composite operator
1/2 A^{a 2}_\mu in QCD with massless quarks in the Landau gauge for an
arbitrary colour group at two loops. For SU(3) we show that an estimate for the
effective gluon mass decreases as N_f increases.Comment: 17 latex page
A low-energy effective Yang-Mills theory for quark and gluon confinement
We derive a gauge-invariant low-energy effective model of the Yang-Mills
theory. We find that the effective gluon propagator belongs to the
Gribov-Stingl type and agrees with it when a mass term which breaks nilpotency
of the BRST symmetry is included. We show that the effective model with gluon
propagator of the Gribov-Stingl type exhibits both quark and gluon confinement:
the Wilson loop average has the area law and the Schwinger function violates
reflection positivity. However, we argue that both quark and gluon confinement
can be obtained even in the absence of such a mass term.Comment: 5 pages, no figures; accepted for publication in Physical Review D
(Rapid Communication
On ghost condensation, mass generation and Abelian dominance in the Maximal Abelian Gauge
Recent work claimed that the off-diagonal gluons (and ghosts) in pure
Yang-Mills theories, with Maximal Abelian gauge fixing (MAG), attain a
dynamical mass through an off-diagonal ghost condensate. This condensation
takes place due to a quartic ghost interaction, unavoidably present in MAG for
renormalizability purposes. The off-diagonal mass can be seen as evidence for
Abelian dominance. We discuss why ghost condensation of the type discussed in
those works cannot be the reason for the off-diagonal mass and Abelian
dominance, since it results in a tachyonic mass. We also point out what the
full mechanism behind the generation of a real mass might look like.Comment: 7 pages; uses revtex
A purely algebraic construction of a gauge and renormalization group invariant scalar glueball operator
This paper presents a complete algebraic proof of the renormalizability of
the gauge invariant operator to all orders of
perturbation theory in pure Yang-Mills gauge theory, whereby working in the
Landau gauge. This renormalization is far from being trivial as mixing occurs
with other gauge variant operators, which we identify explicitly. We
determine the mixing matrix to all orders in perturbation theory by using
only algebraic arguments and consequently we can uncover a renormalization
group invariant by using the anomalous dimension matrix derived from
. We also present a future plan for calculating the mass of the lightest
scalar glueball with the help of the framework we have set up.Comment: 17 page
The self-dual gauge fields and the domain wall fermion zero modes
A new type of gauge fixing of the Coulomb gauge domain wall fermion system
that reduces the fluctuation of the effective running coupling and the
effective mass of arbitrary momentum direction including the region outside the
cylinder cut region is proposed and tested in the
gauge configurations of RBC/UKQCD collaboration.
The running coupling at the lowest momentum point does not show infrared
suppression and compatible with the experimental data extracted from the JLab
collaboration. The source of the fluctuation of the effective mass near
momentum 0.6GeV region is expected to be due to the domain wall fermion
zero modes.Comment: 12 pages 2 figures, extended arguments and references adde
The Infrared Behaviour of the Pure Yang-Mills Green Functions
We review the infrared properties of the pure Yang-Mills correlators and
discuss recent results concerning the two classes of low-momentum solutions for
them reported in literature; i.e. decoupling and scaling solutions. We will
mainly focuss on the Landau gauge and pay special attention to the results
inferred from the analysis of the Dyson-Schwinger equations of the theory and
from "{\it quenched}" lattice QCD. The results obtained from properly
interplaying both approaches are strongly emphasized.Comment: Final version to be published in FBS (54 pgs., 11 figs., 4 tabs
- …