39 research outputs found

    Functional selectivity of adenosine receptor ligands

    Get PDF
    Adenosine receptors are plasma membrane proteins that transduce an extracellular signal into the interior of the cell. Basically every mammalian cell expresses at least one of the four adenosine receptor subtypes. Recent insight in signal transduction cascades teaches us that the current classification of receptor ligands into agonists, antagonists, and inverse agonists relies very much on the experimental setup that was used. Upon activation of the receptors by the ubiquitous endogenous ligand adenosine they engage classical G protein-mediated pathways, resulting in production of second messengers and activation of kinases. Besides this well-described G protein-mediated signaling pathway, adenosine receptors activate scaffold proteins such as Ξ²-arrestins. Using innovative and sensitive experimental tools, it has been possible to detect ligands that preferentially stimulate the Ξ²-arrestin pathway over the G protein-mediated signal transduction route, or vice versa. This phenomenon is referred to as functional selectivity or biased signaling and implies that an antagonist for one pathway may be a full agonist for the other signaling route. Functional selectivity makes it necessary to redefine the functional properties of currently used adenosine receptor ligands and opens possibilities for new and more selective ligands. This review focuses on the current knowledge of functionally selective adenosine receptor ligands and on G protein-independent signaling of adenosine receptors through scaffold proteins

    Synthesis and characterization of high-affinity 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene-labeled fluorescent ligands for human Ξ²-adrenoceptors

    Get PDF
    The growing practice of exploiting noninvasive fluorescence-based techniques to study G protein-coupled receptor pharmacology at the single cell and single molecule level demands the availability of high-quality fluorescent ligands. To this end, this study evaluated a new series of red-emitting ligands for the human Ξ²-adrenoceptor family. Upon the basis of the orthosteric ligands propranolol, alprenolol, and pindolol, the synthesized linker-modified congeners were coupled to the commercially available fluorophore BODIPY 630/650-X. This yielded high-affinity Ξ²-adrenoceptor fluorescent ligands for both the propranolol and alprenolol derivatives; however, the pindolol-based products displayed lower affinity. A fluorescent diethylene glycol linked propranolol derivative (18a) had the highest affinity (log KD of -9.53 and -8.46 as an antagonist of functional Ξ²2- and Ξ²1-mediated responses, respectively). Imaging studies with this compound further confirmed that it can be employed to selectively label the human Ξ²2-adrenoceptor in single living cells, with receptor-associated binding prevented by preincubation with the nonfluorescent Ξ²2-selective antagonist 3-(isopropylamino)-1-[(7-methyl-4-indanyl)oxy]-butan-2-ol (ICI 118551) (J. Cardiovasc. Pharmacol. 1983, 5, 430-437.

    Integration of P2Y receptor-activated signal transduction pathways in G protein-dependent signalling networks

    Get PDF
    The role of nucleotides in intracellular energy provision and nucleic acid synthesis has been known for a long time. In the past decade, evidence has been presented that, in addition to these functions, nucleotides are also autocrine and paracrine messenger molecules that initiate and regulate a large number of biological processes. The actions of extracellular nucleotides are mediated by ionotropic P2X and metabotropic P2Y receptors, while hydrolysis by ecto-enzymes modulates the initial signal. An increasing number of studies have been performed to obtain information on the signal transduction pathways activated by nucleotide receptors. The development of specific and stable purinergic receptor agonists and antagonists with therapeutical potential largely contributed to the identification of receptors responsible for nucleotide-activated pathways. This article reviews the signal transduction pathways activated by P2Y receptors, the involved second messenger systems, GTPases and protein kinases, as well as recent findings concerning P2Y receptor signalling in C6 glioma cells. Besides vertical signal transduction, lateral cross-talks with pathways activated by other G protein-coupled receptors and growth factor receptors are discussed

    Gestational tissue transcriptomics in term and preterm human pregnancies: a systematic review and meta-analysis

    Get PDF

    Sodium sensitivity of substituted benzamide binding at D-2 dopamine receptors expressed in CHO and Sf21 cells

    No full text

    Influence of receptor number on functional responses elicited by agonists acting at the human adenosine A(1) receptor: Evidence for signaling pathway-dependent changes in agonist potency and relative intrinsic activity

    No full text
    Activation of A1 adenosine receptors leads to the inhibition of cAMP accumulation and the stimulation of inositol phosphate accumulation via pertussis toxin-sensitive G-proteins. In this study we have investigated the signaling of the A1 adenosine receptor in Chinese hamster ovary (CHO) cells, when ex-pressed at approximately 203 fmol/mg (CHOA1L) and at ap
    corecore