126 research outputs found

    Locomotor differences in Mongolian gerbils with the effects of midazolam administration in the form of eye drops

    Get PDF
    Background: Midazolam is a sedative-hypnotic agent with amnestic and anticonvulsant properties that can be administrated to mammals through various routes, such as intravenous, intramuscular, oral, intrathecal, rectal, and buccal. Midazolam administration in the form of eye drops through the conjunctiva is not reported in the literature. Aim:This study aims to demonstrate the possible central nervous system effects of midazolam administration as eyes drops in Mongolian gerbils. Materials and Methods: Fourteen gerbils were randomly assigned to one of two equal sized groups. The active arm received 2 ml of 10 mg midazolam as eye drops in both eyes. Control group received a total of 2 ml of physiological saline(0.9% NaCl). We subjected the gerbils to an adapted “Open Field” to determine the possible effects on central nervous system of midazolam. Gerbils were allowed to move freely in the open field. Before and after the drug administration, locomotor activities of each gerbil have been recorded. Frequency of loss of righting reflex was quantified. Results: Conjunctival Midazolam administration resulted with the transient loss of righting reflex (p=0.017) and suppressed exploration motion (p=0.018) in the open field test compared to control subjects. Conclusions: In the present study, administration of conjunctival midazolam as an eye drop may affect gerbil’s locomotor activities and open field behaviors. We argue that, using a sedative and anticonvulsive drug such as midazolam via conjunctival route may be useful in some clinical situations. Therefore, it could be beneficial to develop a new conjunctival formulation of midazolam. Also, there is a need for trials in humans with pharmacokinetic studies.Keywords: Righting reflex; Conjunctival Midazolam; Gerbillinae; Midazolam; Eye drop; New administration routeAfrican Health sciences Vol 14 No. 1 March 201

    Renal Dysfunction Criteria in Critically Ill Children: The PODIUM Consensus Conference

    Full text link
    CONTEXT Renal dysfunction is associated with poor outcomes in critically ill children. OBJECTIVE To evaluate the current evidence for criteria defining renal dysfunction in critically ill children and association with adverse outcomes. To develop contemporary consensus criteria for renal dysfunction in critically ill children. DATA SOURCES PubMed and Embase were searched from January 1992 to January 2020. STUDY SELECTION Included studies evaluated critically ill children with renal dysfunction, performance characteristics of assessment tools for renal dysfunction, and outcomes related to mortality, functional status, or organ-specific or other patient-centered outcomes. Studies with adults or premature infants (≀36 weeks' gestational age), animal studies, reviews, case series, and studies not published in English with inability to determine eligibility criteria were excluded. DATA EXTRACTION Data were extracted from included studies into a standard data extraction form by task force members. RESULTS The systematic review supported the following criteria for renal dysfunction: (1) urine output <0.5 mL/kg per hour for ≄6 hours and serum creatinine increase of 1.5 to 1.9 times baseline or ≄0.3 mg/dL, or (2) urine output <0.5 mL/kg per hour for ≄12 hours, or (3) serum creatinine increase ≄2 times baseline, or (4) estimated glomerular filtration rate <35 mL/minute/1.73 m2, or (5) initiation of renal replacement therapy, or (6) fluid overload ≄20%. Data also support criteria for persistent renal dysfunction and for high risk of renal dysfunction. LIMITATIONS All included studies were observational and many were retrospective. CONCLUSIONS We present consensus criteria for renal dysfunction in critically ill children

    The Neglected Price of Pediatric Acute Kidney Injury: Non-renal Implications

    Get PDF
    Preclinical models and emerging translational data suggest that acute kidney injury (AKI) has far reaching effects on all other major organ systems in the body. Common in critically ill children and adults, AKI is independently associated with worse short and long term morbidity, as well as mortality, in these vulnerable populations. Evidence exists in adult populations regarding the impact AKI has on life course. Recently, non-renal organ effects of AKI have been highlighted in pediatric AKI survivors. Given the unique pediatric considerations related to somatic growth and neurodevelopmental consequences, pediatric AKI has the potential to fundamentally alter life course outcomes. In this article, we highlight the challenging and complex interplay between AKI and the brain, heart, lungs, immune system, growth, functional status, and longitudinal outcomes. Specifically, we discuss the biologic basis for how AKI may contribute to neurologic injury and neurodevelopment, cardiac dysfunction, acute lung injury, immunoparalysis and increased risk of infections, diminished somatic growth, worsened functional status and health related quality of life, and finally the impact on young adult health and life course outcomes

    Urinary nitrate might be an early biomarker for pediatric acute kidney injury in the emergency department

    Get PDF
    NO is involved in normal kidney function and perturbed in acute kidney injury (AKI). We hypothesized that urinary concentration of NO metabolites, nitrite, and nitrate would be lower in children with early AKI presenting to the emergency department (ED), when serum creatinine (SCr) was uninformative. Patients up to 19 y were recruited if they had a urinalysis and SCr obtained for routine care. Primary outcome, AKI, was defined by pediatric Risk, Injury, Failure, Loss of function, End-stage renal disease (pRIFLE) criteria. Urinary nitrite and nitrate were determined by HPLC. A total of 252 patients were enrolled, the majority (93%) of whom were without AKI. Although 18 (7%) had AKI by pRIFLE, 50% may not have had it identified by the SCr value alone at the time of visit. Median urinary nitrate was lower for injury versus risk (p = 0.03); this difference remained significant when the injury group was compared against the combined risk and no AKI groups (p = 0.01). Urinary nitrite was not significantly different between groups. Thus, low urinary nitrate is associated with AKI in the pediatric ED even when SCr is normal. Predictive potential of this putative urinary biomarker for AKI needs further evaluation in sicker patients
    • 

    corecore