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Abstract. Atmospheric processes are highly nonlinear. A
small group at the METU in Ankara has been working on
a fuzzy data driven generic model of nonlinear processes.
The model developed is called the Middle East Techni-
cal University Fuzzy Neural Network Model (METU-FNN-
M). The METU-FNN-M consists of a Fuzzy Inference Sys-
tem (METU-FIS), a data driven Neural Network module
(METU-FNN) of one hidden layer and several neurons, and
a mapping module, which employs the Bezier Surface Map-
ping technique. In this paper, the percent cloud coverage
(%CC) and cloud top temperatures (CTT) are forecast one
month ahead of time at 96 grid locations. The probable in-
fluence of cosmic rays and sunspot numbers on cloudiness is
considered by using the METU-FNN-M.

Keywords. Interplanetary physics (Cosmic rays; Energetic
particles; Instruments and techniques)

1 Introduction

There have been several possible causes of global climate
change discussed in the scientific literature (e.g. Svensmark,
2000, and the references therein). One of such possibilities
has been the change in solar activity and Cosmic Ray (CR)
intensity (Dorman, 2004). Cosmic rays consist of solar and
non-solar born energetic particles, which originate from all
directions in space. The geomagnetic field influences the CR
flux (CRF). The interaction of geomagnetic field with the CR
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yields some ionization in the lower part of the atmosphere
(Palle et al., 2004).

Within the European Science Foundation (ESF) Network:
SPECIAL, various atmospheric electrodynamic and elec-
tromagnetic processes associated with variable solar output
of electromagnetic and corpuscular energies were consid-
ered. In particular, the physics based on numerical model
of the Earth’s atmosphere were studied in order to test the
hypothesis on possible links between the Space Weather
and the Earth’s weather and climate (private communica-
tion: M. Fullekrug, Coordinator of the ESF Network: Space
Weather and the Earth’s Weather and Climate (SPECIAL),
Frankfurt, Germany, 2002) (www.esf.org/fileadmin/beuser/
researchareas/PESC/Documents/SPECIAL2Flyer.pdf).

Carslaw et al. (2002) reported that the CR intensity and
the Earth’s average cloud cover seem to be correlated over
one solar cycle. The implication of such a correlation is that
the Earth’s climate could be affected by changes in percent
cloud coverage (%CC). The occurrence of clouds in the at-
mosphere is well understood in terms of meteorological pa-
rameters, e.g. humidity, temperature, atmospheric dynamics
etc. However, there are many properties of clouds influenced
by a series of complex, nonlinear microphysical processes
(Carslaw et al., 2002). For example, it has been suggested
that CR induced ionization may have direct and indirect im-
pacts on cloud microphysics (Todd and Kniveton, 2001).

The magnitude of the direct and indirect Galactic CR –
cloud interactions in the Near Earth Space remains a contro-
versial issue. In another words, the possible influence of the
charged particles on the Earth’s weather and climate is sub-
ject to a continuing scientific debate. So far, the evidence has
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been based on empirical observations and, to a lesser extent,
on quantitative physical modeling of many coupled nonlin-
ear processes and/or on numerical models. For such cases,
data driven modeling methods have been recommended to
be used in parallel with mathematical modeling approach
(e.g. Tulunay, 1991). Highly nonlinear processes in the Near
Earth Space are advantageously dealt with using data driven
modeling techniques in the Neural Network (NN) approach
providing there are representative data (e.g. Tulunay et al.,
2004a). Therefore, there is a clear need for observational
studies to assess the evidence for the operation of the mech-
anisms proposed at climate space and time scales (Todd and
Kniveton, 2001; Usoskin et al., 2004). While the observa-
tions can be interpreted, the observed data are used as input
to the data driven models.

The Near Earth Space variability at several different time
scales arises from a number of separate factors. The physics
of those variations cannot be modeled due to the lack of cur-
rent information about the parameters of several natural pro-
cesses.

For example CR are shielded by the magnetosphere to a
certain extent, but they can modulate the low level cloud
cover through electrically mediated microphysical processes
in the clouds. In turn, the cloud cover variability strongly
influences weather and climate changes.

CR affects stratosphere, and depending on the amount of
the energy, temperature is increased. This event affects the
troposphere layer, which has the dynamics of the meteoro-
logical and climate related processes. Clouds are formed
from the water vapor in the troposphere.

Because of the spatial and temperature differences, the
layer width of the troposphere shows considerable decrease
at the region in between the equator and the North Pole. In
a previous work, it was observed that the CR and the Sun
Spot Numbers (SSN) affect the formation of the clouds on
mid and high latitudes of Europe (Svensmark, 2000). These
are namely the low level clouds, which bring rains.

In our work, we considered a considerably informative
spatial region, which covers Europe.

With the state of art on data driven modeling that the au-
thors have gained on NN based models in relation to under-
standing the Near Earth Space processes since 1990s, this
time, they propose a Fuzzy Neural Network Model (METU-
FNN-M) in order to forecast the percent cloud coverage
(%CC) and cloud top temperature (CTT) maps between ge-
ographic coordinates of (22.5◦ N; 57.5◦ N); and (7.5◦ W;
47.5◦ E) covering a low sunspot number period during the
years of 1983 to 2000.

In this work, we investigated possible influence of the CR
and SSN on the variation of upper atmosphere parameters,
i.e. %CC and CTT. The METU-FNN-M is developed to fore-
cast and map these meteorological variables without classi-
fying the clouds (Tulunay et al., 2007).

The METU-FNN-M can be applied on clustering clouds as
a future work. There are plenty of works on classification of

clouds. Different techniques are applied for clustering pro-
cess with a variety of input data source.

Rossow et al. (2005) developed a statistical model that
associates cloud types, recognizable from satellite measure-
ments, with particular cloud vertical structures. They com-
bined the statistics of cloud layer occurrence from the Inter-
national Satellite Cloud Climatology Project (ISCCP) and an
analysis of radiosonde humidity profiles. They did not con-
sider the cosmic factors.

Visa and Iivarinen (1997) presented NN based cloud clas-
sifier and showed its evolution capability. In their work, they
used Advanced Very High Resolution Radiometer (AVHRR)
images.

There are probabilistic approaches on cloud classification
as well. Calbo et al. (2001) applied classical maximum likeli-
hood method for clustering clouds. They used ground-based
solar radiation measurements.

2 Motivation

Fuzzy inference is the process of formulating functions from
a given input to an output using fuzzy logic. Fuzzy infer-
ence systems (FIS) are used to explain the specific methods
of fuzzy inference (Matlab, 2005). A fuzzy inference sys-
tem consists of inputs and their membership functions; out-
put and its membership functions; and rules for the member-
ships.

A membership function (MF) is a curve that defines how
each value in the input space is mapped to a membership
value between 0 and 1 (Matlab, 2005). Thus, it specifies the
degree to which a given input belongs to a set or is related to
a concept (Matlab, 2005).

Depending on the methods for the fuzzy rules, FIS type
is selected. The most common FIS types are Mamdani-
type and Sugeno-type. Mamdani type is used widely by
fuzzy system designers (Mamdani and Assilian, 1975; Mat-
lab, 2005; Ozkok, 2005). In using FIS output as an input for
NN, Mamdani-type inference is appropriate. In this work,
METU-FIS uses Mamdani-type FIS. It is a type of fuzzy in-
ference in which the fuzzy sets from the consequent of each
rule are combined through the aggregation operator and the
resulting fuzzy set is defuzzified to yield the output of the
system (Matlab, 2005).

In this work, a data-driven model is developed, trained and
applied for forecasting the %CC and CTT, by considering
the history of those meteorological variables; Cloud Optical
Depth (COD); the Ionization (I) value that is formulized and
computed by using CR data and CTT; SSN; temporal vari-
ables; and defuzified cloudiness. METU-FIS inputs are the
temporal and spatial variables and the cut off rigidity. The
defuzified cloudiness used in the input of the METU-FNN is
the output of the METU-FIS.

The major advantage of the FIS is that it uses its inputs
and the expert knowledge in order to obtain one of the inputs
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of the METU-FNN, i.e. defuzified cloudiness in our case.
METU-NN is a purely data-driven Neural Network model.
However, METU-FNN combines the advantages of the data-
driven approach and the expert knowledge for higher perfor-
mance. This is an important feature of the fuzzy systems,
which increase the accuracy and sensitivity in the forecast
values. To illustrate, the %CC and CTT forecast performance
of the METU-FNN could be compared with the performance
of the METU Neural Network Model (METU-NN) without
fuzziness. METU-NN has proven its success in forecasting
nonlinear complex system parameters, i.e. ionospheric pro-
cesses, agro-environmental processes and mechanical pro-
cesses. Thus, METU-NN results can be used in order to
evaluate METU-FNN results.

The forecast values at uniformly spaced grids over the re-
gion of interest are used for mapping. Bezier surfaces are
applied for mapping purpose. They are not used in forecast-
ing. The advantage of Bezier surfaces is the local control of
the nonlinearity mapping with high accuracy when compared
to Kriging method. The disadvantage of the Bezier surfaces
is that they are not tolerant to missing data and non-uniform
data. Since we used uniform and intense measurement data
over the region of interest we found Bezier surfaces to be
appropriate for mapping.

3 Data

The percent Cloud Coverage (%CC) or the “Total Cloud
Amount (TCA)” is the fraction of cloudiness. “Cloud Top
Temperature (CTT)” is the temperature at the top of the
highest clouds of interest. Cloud Optical Depth (COD)
is the optical thickness of the clouds (http://isccp.giss.nasa.
gov/products/browsed2.html). In this paper, the parameters
to represent any probable climate change are chosen to be
%CC, CTT, and COD. All the cloud data are smoothed by
taking the 3-month running means.

“Cosmic Ray Flux (CRF)” and the monthly means
of the “Sunspot Numbers (SSN)” data are considered
as the Space Weather parameters, which influence the
cloud formation. CRF and SSN data are obtained
from the Climax CR database (ftp://ftp.ngdc.noaa.gov/STP/
SOLAR DATA/COSMIC RAYS/climax.tab) and from the
SSN database (ftp://ftp.ngdc.noaa.gov/STP/SOLARDATA/
SUNSPOTNUMBERS), respectively.

For the spatial coverage of the task, the cut off rigid-
ity values are calculated via the cut off rigidity calcula-
tor java applet (ftp://nssdcftp.gsfc.nasa.gov/models/cosmic
rays/cutoffrigidity sw/).

It is assumed that the variability of the CRF and CTT are
related to the ionization produced by the CR’s locally. There-
fore, a statistical analysis is performed for the best-fit curve.
Equation (1) is the analytical expression, which is used to
obtain the amount of ionization in terms of 3-month running

means of the CRF and the CTT for a specific monthk.

I (k) = 640

(
1

2.2
(ln (CRF(k)) − 8.25)

−0.003

CTT(k) −

k∑
n=k−11

CTT(n)

12


)

+ 640 (1)

The mean of the ionization values is found to be 640 cm−3,
which checks with that of Usoskin et al. (2004).

The spatial and temporal data coverage include the region
covering Europe, the Mediterranean Sea, and north Africa
that is between (22.5◦ N; 57.5◦ N) and (7.5◦ W; 47.5◦ E) dur-
ing the period between July 1983 and August 2000. The
Earth’s weather data are collected at every 5◦ by 5◦ latitude
and longitude areas yielding 96 grid points.

The time period in between the years 1983 and 2000 cover
two SSN peaks. The period can be investigated in two slots
with similar solar activity, i.e. the first half in between 1983
and 1992 and the second half in between 1992 and 2000.

It is known that the CR shows an inverse relationship to
the sunspot cycle because Sun’s magnetic field is stronger
during sunspot maximum and it shields the Earth from cos-
mic rays (http://www.ngdc.noaa.gov/stp/SOLAR/COSMIC
RAYS/cosmic.html). We used the first slot data for training
purpose and the second slot data for validation purpose.

4 METU Fuzzy Neural Network Model
(METU-FNN-M)

One month in advance forecast values of %CC and CTT are
obtained by using the METU-FNN and the forecast maps are
obtained by using Bezier surfaces (Senalp, 2007). To the best
knowledge of the authors, it is the first time that a Fuzzy Neu-
ral Network with Bezier surface mapping technique is devel-
oped in order to forecast and map the parameters of such
Near Earth space processes.

The forecast modeling process consists of (i) “training”;
(ii) “validation within training; and (iii) “validation within
operation” phases (Tulunay et al., 2004a). Unless otherwise
stated the “validation within operation” will be referred as
“operation”.

Previously it has been demonstrated by the authors that
data driven approaches such as the use of Neural Network
(NN) based approaches are promising in modeling of iono-
spheric processes (Tulunay, 1991; Altinay et al., 1997; Y. Tu-
lunay et al., 2000, 2001, 2004a, b; E. Tulunay et al., 2004;
Radicella and Tulunay, 2004; Stamper et al., 2004; Tulunay
et al., 2006).

In this work, the %CC and CTT forecast model consists
of one Mamdani-type FIS block (METU-FIS) and one FNN
block (METU-FNN). Figure 1 shows the connections of the
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Fig. 1. METU Fuzzy Neural Network Model (METU-FNN-M)
block diagram having the METU Fuzzy Inference System (METU-
FIS) and the METU-FNN blocks.

METU-FIS and METU-FNN blocks. The model has 96 sub-
modules corresponding to 96 grid locations. The METU-
FNN-M has been developed on Matlab platform.

The architectures of the METU-FIS and METU-FNN
blocks are given in Fig. 2 and Fig. 3, respectively. METU-
FIS is the block that converts its inputs to fuzzy variables
and then provides a defuzzified cloudiness variable, which
is one of the inputs in the METU-FNN. Thus, METU-FIS
uses the expert information in the model and it is connected
to the METU-FNN. METU-FNN is the Artificial Intelligent
(AI) block having data-driven learning capability. It gives the
%CC and CTT forecast values at its output layer.

The detailed inner structure of the METU-FIS is illustrated
schematically in Fig. 2. In this figure, the input parameters
to the METU-FIS are the time (year number and season in-
formation); geographic coordinates (latitude and longitude);
and cut off rigidity. Membership functions or logical rules
to employ in the Mamdani type METU-FIS are established
for these input parameters by studying the seasonal, geo-
graphical and cut off rigidity dependences ofp1 (cloudiness).
Lower %CC values are observed during summer in North-
ern Hemisphere, and %CC increases for the northern geo-
graphical latitudes. These are the two major factors affecting
%CC. There are also other factors. For the region of interest,
in general, as geographical longitude increases %CC values
slightly decrease. Higher the cut-off rigidity factor, lower the
CRF penetrate, thus lower the %CC values are. One minor
effect for the %CC values is the year of interest. In this era,
in long term, %CC values are reduced. With those properties,
fuzzy rules and membership functions for the METU-FIS in-
puts and output are assigned. The output of the METU-FIS
or the first input of the METU-FNN block is the defuzzified
form of p1 (cloudiness).

Figure 3 illustrates the detailed inner structure of the
METU-FNN schematically. Among the various NN struc-
tures the best configuration is found to be the one with one
hidden layer. In this work, 20 neurons were used in the hid-
den layer. There are 16 inputs, 20 hidden neurons and 2 out-
puts in the feed-forward structure.

Fig. 2. Structure of the METU Fuzzy Inference System.

Table 1 shows all the input parameters to METU-FNN
and the outputs of METU-FNN. The inputs of the METU-
FNN are the defuzified cloudiness, which is the METU-FIS
output; trigonometric components of the temporal variables;
the meteorological variables: %CC, CTT and Cloud Opti-
cal Depth (COD); the Ionization (I) value that is computed
by using CR data and CTT; SSN; and the history of the me-
teorological variables. First, second and relative difference
values of the system parameters are three major history in-
puts in the METU-FNN. First and second difference values
in discrete time domain correspond to the first and second
time derivatives in continuous time domain. They provide
dynamic information for the processes. The physical impact
of them can be illustrated in any dynamic problem of interest,
(e.g. velocity and acceleration in mechanical systems). Rela-
tive difference provides extra information by normalizing the
first difference values with respect to the initial value in order
to avoid scaling problems in modeling. To justify, if the ini-
tial parameter value is small, then a considerable amount of
change of a parameter is to be treated accordingly. However,
if the initial value is large, the same amount of change of the
parameter may be of less importance. Relative difference is
appropriate for such an evaluation.

The periods of data coverage in “training” and “operation”
phases are denoted in Table 2.

The METU-FNN module needs a large amount of data and
the nonlinear inherent process is to be learned as fast as pos-
sible during the “training” phase. Therefore, the Levenberg-
Marquardt Backpropagation algorithm is chosen to be the
most convenient one (Hagan and Menhaj, 1994; Haykin,
1999).

As the training process advances, the training error starts
to decrease, and it eventually goes to zero. Zero error corre-
sponds to memorization state. Memorization means the loss
of the generalization capability of the Neural Network. To
prevent memorization, when the gradient of the error in the
“validation within training” phase becomes near zero train-
ing is terminated. The model is then ready for its actual use
in the forecasting operation. In the operation mode the vali-
dation data are used for calculating the errors, point by point,
to measure the performance of the model.
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Fig. 3. Architecture of the METU Fuzzy Neural Network (METU-FNN) module wherep1 is defuzified input.

Table 1. Inputs and outputs of the METU-FNN.

I/PUT number I/PUT O/PUT

p1 defuzzified cloudiness
p2; p3 sin(2.π .k/12); –cos(2.π .k/12)
p4 f1≡%CC(k)
p5 f2≡CTT(k) %CC(k+1)
p6 f3≡COD(k) and
p7 I (k) CTT(k+1)
p8 SSN(k)
p9; p10; p11 11(fi=1,2,3(k))=fi=1,2,3(k)−fi=1,2,3(k−1)

p12; p13; p14 12(fi=1,2,3 (k))=11(fi=1,2,3 (k))–11(fi=1,2,3 (k−1))
p15; p16 R1(fi=1,2 (k))=11(fi=1,2 (k))/fi=1,2 (k)

5 Mapping by using Bezier surfaces

As explained in the previous sections, for each grid, the input
parameters to the METU-FIS are the time (year number and
season information); geographic coordinates (latitude and
longitude); and cut off rigidity. The spatial information has
been embedded in the METU-FIS. Thus, the METU-FNN
%CC and CTT forecast outputs for each grid have spatial in-
formation even before the mapping process.

In addition, local spatial correlations are considered by
applying Bezier surfaces in the mapping process. Various
computer graphics applications use Bezier surfaces in sur-
face mapping since the approach is very sensitive in local
control (Rogers and Adams, 1990).

The Bezier surfaces have been used for mapping of some
Near Earth Space parameters by the authors previously (Tu-
lunay et al., 2006).

Table 2. Organization of data.

Phase Period

Training August 1984 to August 1992
Operation September 1992 to August 2000

Equation (2) is employed in computing the %CC or CTT
forecast values at any location on the map by using Bezier
surfaces.

f (u, w) =

n∑
i=0

m∑
j=0

Bi+1,j+1.Jn,i(u).Km,j (w) (2)
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Fig. 4. Observed and 1 month ahead Forecast %CC maps of January
and July 2000.

whereJ andK are the Bernstein basis functions as de-
noted in Eq. (3).

Jn,i(u) =

(
n

i

)
ui(1 − u)n−i

Km,j (w) =

(
m

j

)
wj (1 − w)m−j (3)

The elements of the matrix B are the METU-FNN %CC
and CTT outputs for the grids. The 96 grids are formed
as (n+1=12 longitude) by (m+1=8 latitude) segments. In
Eqs. (2) and (3),u andw denote the normalized values of
longitude and latitude, respectively.

6 Results

In the “operation” mode, the 96 modules of the METU-FNN
yield the 96 one month in advance values of the Percent
Cloud Coverage (%CC) and Cloud Top Temperature (CTT).
These forecast values are then used in the Bezier surface
equations to produce maps.

The maps of the %CC and CTT are constructed through-
out the spatial and temporal “operation” coverage of interest.
A video presentation is available at thewww.ae.metu.edu.tr/
∼cost. Some typical examples of such maps are presented in
Figs. 4 and 5. They are the maps to demonstrate the forecast
and mapping performance of the METU-FNN-M for fore-
casting %CC and CTT.

Figures 6 and 7 exhibit how the forecast values of %CC
and CTT follow the inherent nonlinearities of the observed

Fig. 5. Observed and 1 month ahead Forecast CTT maps of January
and July 2000.

%CC and CTT, respectively, on the average. Superimposed
on the top of the figures are their absolute error variations.
In these figures, the observed data are superimposed by the
corresponding forecast values at a randomly chosen grid lo-
cation of (37.5◦ N; 27.5◦ E) during the operation period of
September 1992 to August 2000.

The performance measure of the forecast operation is ex-
pressed in terms of absolute error values computed at each
one of the 96 grid locations. Figures 8 and 9 are illustrating
the error maps.

Figures 10 and 11 are the scatter diagrams of the observed
and forecast %CC; and the observed and forecast CTT at the
sample grid location of (37.5◦ N; 27.5◦ E) during September
1992 to August 2000, respectively.

As it is shown, observed and forecast %CC and CTT vari-
ations are coherent. The forecasting errors between observed
and forecast %CC and CTT are small and the best-fit lines
in the scatter diagrams have slopes close to one. Thus, the
model reached correct operating point. The correlation coef-
ficients between observed and forecast %CC and CTT maps
are very close to one and the deviations from straight lines in
the scatter diagrams are small. Thus, the model learned the
inherent nonlinearities of the process of interest.

METU-NN results can be used in order to evaluate
METU-FNN results further. The average absolute error val-
ues in forecasting %CC by METU-FNN and by METU-
NN are 4.26% and 4.31% respectively. The average abso-
lute error values in forecasting CTT by METU-FNN and by
METU-NN are 3.38 K and 3.40 K, respectively. The average
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Fig. 6. Observed monthly averages of the %CC values (dashed)
and superimposed are the one-month in advance forecast %CC val-
ues (solid) versus time. The absolute error values on the computed
parameters versus time are shown in the top panel.

cross correlation value for the forecast results by METU-
FNN and for the observed values is 1% higher than the ones
by METU-NN.

7 Conclusions

In this paper, the Percent Cloud Coverage (%CC) and Cloud
Top Temperatures (CTT) are forecast one month ahead of
time at 96 grid locations. The probable influence of Cos-
mic Rays (CR) and Sunspot Numbers (SSN) on cloudiness
is considered.

Fuzzy Neural Network Model, METU-FNN-M is con-
structed for the task. Bezier surfaces are used in obtaining
the forecast %CC and CTT maps over a region including Eu-
rope, the Mediterranean Sea and North Africa. The results
are exhibited as maps and individual curves.

Forecast %CC and CTT maps are obtained by using
METU-FNN-M in the operation time of interest, September
1992–August 2000. Forecasting errors are small. This fact
is the indication of the system reaching the correct operating
point within training. In other words, the system is prevented
to reach local minima of the error cost function and it is suc-
ceeded to reach the global minimum. The correlation coef-
ficients between the observed and forecast values are very
close to one, which means that the METU-FNN-M learned
the shape of the inherent nonlinearities as noted by the best-

Fig. 7. Observed monthly averages of the CTT values (dashed) and
superimposed are the one month in advance forecast CTT values
(solid) versus time. The absolute error values on the computed pa-
rameters versus time are shown in the top panel.

fit line in the scatter diagrams. As a conclusion, it is shown
that properly constructed Fuzzy Neural Network based sys-
tems, trained and tested with properly organized data includ-
ing the ones organized by constructing intelligent fuzzy in-
ference systems are promising in modeling the complex non-
linear processes, such as the variability of the %CC and CTT
values. The forecast mapping performance is within opera-
tional tolerance (private communication: M. Yayvan, Turkish
State Meteorological Service, Ankara, Turkey, 2007).

The heat transports are caused by dynamic complex sys-
tems of different sources. Thus, the performance of forecast-
ing CTT is lower than the performance of forecasting %CC.
Within the dynamics, solar radiation is converted into heat
and “heat” radiation, water vapor and the circulations of the
atmosphere and ocean by the climate system (Zhang et al.,
2004). The optical properties of the cloud particles, optical
depth, cloud formation level and dynamical processes affect
the CTT variation.

Clouds play important role on the Earth’s atmosphere in
terms of the radiation balance. It has cooling and warming
effects. The cooling effect takes place as a result of the re-
flection of the short wave radiation coming to atmosphere.
The warming effect is due to the absorption of the long wave
radiation emitted from the Earth’s surface.
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Fig. 8. The map of the absolute error values on the %CC versus
latitude and longitude grids.

Fig. 9. The map of the absolute error values on the CTT versus
latitude and longitude grids.

These effects vary according to the height and type of the
cloud, amount of radiation reflected from the cloud, and tem-
poral and microphysical characteristics of the cloud.

The formation of the clouds can be estimated by several
meteorological parameters such as moisture, temperature,
and other parameters related with the atmospheric dynamics.
The required physical and dynamical factors are the amount
of water vapor and the cooling process, respectively. These
factors allow the condensation, large scale systematic mo-
tions, rising motions over the depression regions, uplift along
weather fronts and low-level convergence areas, medium and
small-scale convection, and orographic rising.

Fig. 10. The scatter diagram of the one-month in advance forecast
%CC values versus the observed %CC values and the best-fit line.
R is the cross correlation coefficient between the forecast and the
observed values.

Fig. 11. The scatter diagram of the one-month in advance forecast
CTT values versus the observed CTT values and the best-fit line.
R is the cross correlation coefficient between the forecast and the
observed values.

As a result of these physical and dynamical processes,
clouds have different types of microphysical properties at
different levels. For example, the low level clouds are the
clouds, which have high temperature at the cloud top and
high optical thickness.
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The optical thickness of the clouds depends on the dimen-
sion of the cloud, factors affecting the distribution, and the
vertical temperature profile (Akcan, 2004).

Aerosols affect the cloud formation process. The relation
between the cosmic rays and the clouds comes from the ef-
fect of the ions on the cloud microphysics. This mechanism
can be described as the growing of the condensation nuclei
as a result of the combination of the ions with the atmo-
spheric aerosols. The higher the number of ions, the higher
the environmental water vapor concentration is. Change in
the amount of cosmic ray flux affects the effectiveness of the
charged aerosols around the clouds. As a result of this, mi-
crophysical processes, which include the aerosols and cloud
droplets, can be affected (Swensmark, 2000).

There are uncertainties in climate forcing research, be-
cause of the lack of detailed knowledge of the optical prop-
erties of aerosols. Works on characterization of aerosol will
help refine aerosol optical models and reduce uncertainties in
satellite observations of the global aerosol and in modelling
aerosol impacts on climate (Dubovik et al., 2002).

In this work, in order to show the generalization capabil-
ity, long-term cloud analysis has been performed on a region
showing differences in terms of atmospheric activity. To il-
lustrate, one of the grids on the region is at (37.5◦ N, 27.5◦ E).
In general, this sample grid location is under the effect of the
Mediterranean frontal zone and temporary cyclones are ac-
tive and effective in winters. These conditions are the basis
for the rising motions along the frontal zone and cyclone for
the formation of the clouds. On the other hand, the vertical
convective motions depending on the land warming over this
sample grid location dominate the summer season.

Consequently, vertical motions depending on the differ-
ent mechanisms, cloud amount, cloud type and level and the
cloud top temperature show differences temporally and spa-
tially. However, the effects of the CR and SSN are general.

In the METU-FNN-M, both CR Flux and SSN reflect the
influence of Space Weather on general planetary situation;
but other parameters in the inputs of the model reflect local
situation. Thus global and local parameters of the process are
considered. This is the main cause why the correlations be-
tween the forecast and observed parameters are very promis-
ing.

Quantification of physical mechanisms, which causally
link Space Weather to the Earth’s Weather and climate, in or-
der to reduce the uncertainties in the level of scientific under-
standing of aerosols and solar forcing on the global climate
system, has been a challenging task. This has been specified
in the Intergovernmental Panel on Climate Change (IPCC)
2001 (private communication: M. Fullekrug, Coordinator of
the ESF Network: Space Weather and the Earth’s Weather
and Climate (SPECIAL), Frankfurt, Germany, 2002). In this
connection, to study the probable effect of the CR and SSN
on the %CC/CTT, one needs to include, at least few solar cy-
cle long data. For such an investigation, the model developed
here would be useful since the CR Flux as given one of the

inputs to the model improved the performance of the model
in terms of smaller errors in the forecast of %CC and CTT
values. It is hoped that this model would be used in parallel
with mathematical models based on the first physical princi-
ples. The model contributes to the cloud formation process,
in particular, its dependence on CR Fluxes.

The system developers may use the one-month in advance
forecast values of the model as inputs to other models, which
forecast some other local or global parameters in order to test
the hypothesis on possible link(s) between Space Weather
and the Earth’s Weather and climate.

It is believed that this is the first forecast mapping applica-
tion of a Fuzzy Neural Network and Bezier surface fitting on
the %CC and CTT values over Europe.
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