15 research outputs found

    Herschel-PACS spectroscopy of the intermediate mass protostar NGC 7129 FIRS 2

    Get PDF
    Aims. We present preliminary results of the first Herschel spectroscopic observations of NGC 7129 FIRS2, an intermediate mass star-forming region. We attempt to interpret the observations in the framework of an in-falling spherical envelope. Methods. The PACS instrument was used in line spectroscopy mode (R = 1000–5000) with 15 spectral bands between 63 and 185 μm. This provided good detections of 26 spectral lines seen in emission, including lines of H2O, CO, OH, O I, and C II. Results. Most of the detected lines, particularly those of H2O and CO, are substantially stronger than predicted by the spherical envelope models, typically by several orders of magnitude. In this paper we focus on what can be learned from the detected CO emission lines. Conclusions. It is unlikely that the much stronger than expected line emission arises in the (spherical) envelope of the YSO. The region hot enough to produce such high excitation lines within such an envelope is too small to produce the amount of emission observed. Virtually all of this high excitation emission must arise in structures such as as along the walls of the outflow cavity with the emission produced by a combination of UV photon heating and/or non-dissociative shocks

    The APEX Large CO Heterodyne Orion Legacy Survey (ALCOHOLS): I. Survey overview

    Get PDF
    Context: The Orion molecular cloud complex harbours the nearest Giant Molecular Clouds (GMCs) and the nearest site of high-mass star formation. Its young star and protostar populations are thoroughly characterized. The region is therefore a prime target for the study of star formation. Aims: Here, we verify the performance of the SuperCAM 64 pixel heterodyne array on the Atacama Pathfinder Experiment (APEX). We give a descriptive overview of a set of wide-field CO(3-2) spectral line cubes obtained towards the Orion GMC complex, aimed at characterizing the dynamics and structure of the extended molecular gas in diverse regions of the clouds, ranging from very active sites of clustered star formation in Orion B to comparatively quiet regions in southern Orion A. In a future publication, we will characterize the full population of protostellar outflows and their feedback over an entire GMC. Methods: We present a 2.7 square degree (130 pc2) mapping survey in the 12CO(3-2) transition, obtained using SuperCAM on APEX at an angular resolution of 1900 (7600 AU or 0.037 pc at a distance of 400 pc), covering the main sites of star formation in the Orion B cloud (L 1622, NGC 2071, NGC 2068, Ori B9, NGC 2024, and NGC 2023), and a large patch in the southern part of the L 1641 cloud in Orion A. Results: We describe CO integrated line emission and line moment maps and position-velocity diagrams for all survey fields and discuss a few subregions in some detail. Evidence for expanding bubbles is seen with lines splitting into double components, often in areas of optical nebulosities, most prominently in the NGC 2024 H ii region, where we argue that the bulk of the molecular gas is in the foreground of the H ii region. High CO(3-2)/CO(1-0) line ratios reveal warm CO along the western edge of the Orion B cloud in the NGC 2023/NGC 2024 region facing the IC 434 H ii region. We see multiple, well separated radial velocity cloud components towards several fields and propose that L 1641-S consists of a sequence of clouds at increasingly larger distances. We find a small, seemingly spherical cloud, which we term ’Cow Nebula’ globule, north of NGC 2071. We confirm that we can trace high velocity line wings out to the ’extremely high velocity’ regime in protostellar molecular outflows for the NGC 2071-IR outflow and the NGC 2024 CO jet, and identify the protostellar dust core FIR4 (rather than FIR5) as the true driving source of the NGC 2024 monopolar outflow
    corecore