7 research outputs found

    Phosphotungstic Acid-Modified MnOx for Selective Catalytic Reduction of NOx with NH3

    No full text
    H3PW12O40-modified MnOx catalysts (denoted as Mn-HPW) were used for NOx elimination with co-fed NH3. The optimal Mn-HPW0.02 catalyst exhibited over 90% NOx conversion at 90–270 °C. The incorporation of HPW increased the amount of Lewis acid sites of the catalyst for adsorbing NH3, and accelerated the reaction between the adsorbed NH3 species and gas-phase NOx, thus, increasing the low-temperature catalytic activity. The oxidation ability of the Mn catalyst was decreased due to the addition of HPW, thus, mitigating the overoxidation of the adsorbed NH3 species and improving the de-NOx activity and N2 selectivity in the high-temperature region. DRIFT results revealed that the NH3 species on Lewis and Brønsted acid sites, bridged nitrate, and bidentate nitrate were important species/intermediates for the reaction. NH3-SCR over the Mn and Mn-HPW0.02 catalysts obeyed the Eley–Rideal and Langmuir–Hinshelwood mechanisms, simultaneously, at 120 °C

    Phosphotungstic Acid-Modified MnO<sub>x</sub> for Selective Catalytic Reduction of NO<sub>x</sub> with NH<sub>3</sub>

    No full text
    H3PW12O40-modified MnOx catalysts (denoted as Mn-HPW) were used for NOx elimination with co-fed NH3. The optimal Mn-HPW0.02 catalyst exhibited over 90% NOx conversion at 90–270 °C. The incorporation of HPW increased the amount of Lewis acid sites of the catalyst for adsorbing NH3, and accelerated the reaction between the adsorbed NH3 species and gas-phase NOx, thus, increasing the low-temperature catalytic activity. The oxidation ability of the Mn catalyst was decreased due to the addition of HPW, thus, mitigating the overoxidation of the adsorbed NH3 species and improving the de-NOx activity and N2 selectivity in the high-temperature region. DRIFT results revealed that the NH3 species on Lewis and Brønsted acid sites, bridged nitrate, and bidentate nitrate were important species/intermediates for the reaction. NH3-SCR over the Mn and Mn-HPW0.02 catalysts obeyed the Eley–Rideal and Langmuir–Hinshelwood mechanisms, simultaneously, at 120 °C

    Significant contributions of trimethylamine to sulfuric acid nucleation in polluted environments

    No full text
    As one of the least understood aerosol processes, nucleation can be a dominant source of atmospheric aerosols. Sulfuric acid (SA)-amine binary nucleation with dimethylamine (DMA) has been recognized as a governing mechanism in the polluted continental boundary layer. Here we demonstrate the importance of trimethylamine (TMA) for nucleation in the complex atmosphere and propose a molecular-level SA-DMA-TMA ternary nucleation mechanism as an improvement upon the conventional binary mechanism. Using the proposed mechanism, we could connect the gaseous amines to the SA-amine cluster signals measured in the atmosphere of urban Beijing. Results show that TMA can accelerate the SA-DMA-based new particle formation in Beijing by 50-100%. Considering the global abundance of TMA and DMA, our findings imply comparable importance of TMA and DMA to nucleation in the polluted continental boundary layer, with probably higher contributions from TMA in polluted rural environments and future urban environments with controlled DMA emissions.Peer reviewe

    Biomass and Stand Characteristics of a Highly Productive Mixed Douglas-Fir and Western Hemlock Plantation in Coastal Washington

    No full text
    Aboveground biomass predictive equations were developed for a highly productive 47-year-old mixed Douglas-fir and western hemlock stand in southwest Washington State to characterize the preharvest stand attributes for the Fall River Long-Term Site Productivity Study. The equations were developed using detailed biomass data taken from 31 Douglas-fir and 11 western hemlock trees within the original stand. The stand had an average of 615 live trees per hectare, with an average dbh of 35.6 cm (39.1 cm for Douglas-fir and 33.3 cm for western hemlock) and an average total tree height of 31.6 m (32.8 m for Douglas-fir and 30.2 m for western hemlock). Equations developed were of the form In Y = b(1) + b(2) In dbh, where Y = biomass in kg, dbh = diameter in cm at 1.3 m height, b(1) = intercept, and b(2) = slope of equation. Each tree part was estimated separately and also combined into total aboveground biomass. The total aboveground biomass estimation equations were In Y = -0.9950 + 2.0765 In dbh for Douglas-fir, and In Y = -1.6612 + 2.2321 In dbh for western hemlock. The estimate of the aboveground live-free biomass was of 395 Mg ha(-1) (235 Mg ha(-1) for Douglas-fir and 160 Mg ha(-1) for western hemlock), with 9.5, 29.3, 12.9, 308, and 32.7 Mg ha(-1) in the foliage, live branches, dead branches, stem wood, and stem hark, respectively. When compared with biomass estimates from six other studies, ranging in age from 22 to 110 years and from 96.3 to 636 Mg ha(-1), the biomass of the Fall River site was relatively high for its age, indicating very high productivity

    The Synergistic Role of Sulfuric Acid, Bases, and Oxidized Organics Governing New-Particle Formation in Beijing

    Get PDF
    Intense and frequent new particle formation (NPF) events have been observed in polluted urban environments, yet the dominant mechanisms are still under debate. To understand the key species and governing processes of NPF in polluted urban environments, we conducted comprehensive measurements in downtown Beijing during January-March, 2018. We performed detailed analyses on sulfuric acid cluster composition and budget, as well as the chemical and physical properties of oxidized organic molecules (OOMs). Our results demonstrate that the fast clustering of sulfuric acid (H2SO4) and base molecules triggered the NPF events, and OOMs further helped grow the newly formed particles toward climate- and health-relevant sizes. This synergistic role of H2SO4, base species, and OOMs in NPF is likely representative of polluted urban environments where abundant H2SO4 and base species usually co-exist, and OOMs are with moderately low volatility when produced under high NOx concentrations.Peer reviewe
    corecore