380 research outputs found

    On fluctuations of global and mesoscopic linear eigenvalue statistics of generalized Wigner matrices

    Full text link
    We consider an NN by NN real or complex generalized Wigner matrix HNH_N, whose entries are independent centered random variables with uniformly bounded moments. We assume that the variance profile, sij:=EHij2s_{ij}:=\mathbb{E} |H_{ij}|^2, satisfies i=1Nsij=1\sum_{i=1}^Ns_{ij}=1, for all 1jN1 \leq j \leq N and c1Nsijcc^{-1} \leq N s_{ij} \leq c for all 1i,jN 1 \leq i,j \leq N with some constant c1c \geq 1. We establish Gaussian fluctuations for the linear eigenvalue statistics of HNH_N on global scales, as well as on all mesoscopic scales up to the spectral edges, with the expectation and variance formulated in terms of the variance profile. We subsequently obtain the universal mesoscopic central limit theorems for the linear eigenvalue statistics inside the bulk and at the edges respectively.Comment: Shortened the statement with refined proof. Updated the references and corrected some typo

    A Method for SINS Alignment with Large Initial Misalignment Angles Based on Kalman Filter with Parameters Resetting

    Get PDF
    In the initial alignment process of strapdown inertial navigation system (SINS), large initial misalignment angles always bring nonlinear problem, which causes alignment failure when the classical linear error model and standard Kalman filter are used. In this paper, the problem of large misalignment angles in SINS initial alignment is investigated, and the key reason for alignment failure is given as the state covariance from Kalman filter cannot represent the true one during the steady filtering process. According to the analysis, an alignment method for SINS based on multiresetting the state covariance matrix of Kalman filter is designed to deal with large initial misalignment angles, in which classical linear error model and standard Kalman filter are used, but the state covariance matrix should be multireset before the steady process until large misalignment angles are decreased to small ones. The performance of the proposed method is evaluated by simulation and car test, and the results indicate that the proposed method can fulfill initial alignment with large misalignment angles effectively and the alignment accuracy of the proposed method is as precise as that of alignment with small misalignment angles

    H∞ filter for flexure deformation and lever arm effect compensation in M/S INS integration

    Get PDF
    ABSTRACTOn ship, especially on large ship, the flexure deformation between Master (M)/Slave (S) Inertial Navigation System (INS) is a key factor which determines the accuracy of the integrated system of M/S INS. In engineering this flexure deformation will be increased with the added ship size. In the M/S INS integrated system, the attitude error between MINS and SINS cannot really reflect the misalignment angle change of SINS due to the flexure deformation. At the same time, the flexure deformation will bring the change of the lever arm size, which further induces the uncertainty of lever arm velocity, resulting in the velocity matching error. To solve this problem, a H∞ algorithm is proposed, in which the attitude and velocity matching error caused by deformation is considered as measurement noise with limited energy, and measurement noise will be restrained by the robustness of H∞ filter. Based on the classical “attitude plus velocity” matching method, the progress of M/S INS information fusion is simulated and compared by using three kinds of schemes, which are known and unknown flexure deformation with standard Kalman filter, and unknown flexure deformation with H∞ filter, respectively. Simulation results indicate that H∞ filter can effectively improve the accuracy of information fusion when flexure deformation is unknown but non-ignorable

    A Tight Linear Program for Feasibility Check and Solutions to Natural Gas Flow Equations

    Get PDF

    Antimicrobial Resistance and Cytotoxicity of Citrobacter spp. in Maanshan Anhui Province, China

    Get PDF
    Objectives:Citrobacter spp. especially Citrobacter freundii, is frequently causing nosocomial infections, and increasingly becoming multi-drug resistant (MDR). In this study, we aimed to determine the genetic diversity and relationships of Citrobacter spp. from diarrheal patients and food sources, their antimicrobial resistance profiles and in vitro virulence properties.Methods: Sixty two Citrobacter isolates, including 13 C. freundii, 41 C. youngae and eight C. braakii isolates, were obtained from human diarrheal patients and food sources. Multilocus Sequence Typing (MLST) of seven housekeeping genes and antimicrobial susceptibility testing using the broth microdilution method according to CLSI recommendations were carried out. Adhesion and cytotoxicity to HEp-2 cells were performed. PCR and sequencing were used to identify blaCTX−M, blaSHV, blaTEM and qnr genes.Results: The 62 isolates were divided into 53 sequence types (STs) with all STs being novel, displaying high genetic diversity. ST39 was a predominant ST shared by 5 C. youngae strains isolated from four foods and a diarrheal patient. All isolates were resistant to cefoxitin, and sensitive to imipenem, meropenem and amikacin. The majority of Citrobacter isolates (61.3%) were MDR of three or more antibiotics out of the 22 antibiotics tested. Two C. freundii isolates each carried the blaTEM−1 gene and a variant of qnrB77. Three Citrobacter isolates each carried qnrS1 and aac(6')-Ib-cr genes. Seven isolates that showed strong cytotoxicity to HEp-2 cells were MDR.Conclusions:Citrobacter spp. from human and food sources are diverse with variation in virulence properties and antibiotic resistance profiles. Food may be an important source of Citrobacter species in transmission to humans. C. freundii and C. youngae are potential foodborne pathogens

    Supramolecular Assembly and Stimuli-Responsive Behavior of Multielement Hybrid Copolymers

    Get PDF
    Toward the organic polymer, hybrid elements can be defined as those beyond C, H, O, and N. Polymers comprising hybrid elements, such as Si, P, B, or metal ions have attracted great attention in the design of high performance or smart materials. Introduction of hybrid elements into a polymeric network may also lead to the formation of new intermolecular interactions, thus promote the self-organization of polymer chains to form controllable structures and morphologies. In this chapter, we introduce some of the recent important development in the design and self-assembly of hybrid amphiphilic copolymers. Specific attention was paid on the hybrid amphiphilic copolymers containing POSS, boronic acid, or boronate functional moieties. We introduce the design, synthesis, self-assembly behavior, and properties of these hybrid amphiphilic copolymers in detail. Also, the advantages and drawbacks of these polymers and their corresponding nanoassemblies are discussed
    corecore