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Abstract—This letter proposed a novel convex optimization 

model, whose optimal solution is proved to be the precise solution 

of the natural gas flow equations. Furthermore, a linear program 

is employed to tightly linearize the nonlinear parts and a corollary 

is given to check the feasibility. Numerical results show the effec-

tiveness of the proposed method.  

Index Terms—Integrated power and natural gas systems, gas 

flow equations, feasibility testing, constraint satisfaction problem 

I. INTRODUCTION 

ntegrated energy systems, breaking down the barriers among 

historically independent sectors, can make significant im-

provements to achieve higher energy efficiency and lower en-

ergy costs. For traditional power systems, the integrated energy 

systems can provide more flexibility enabled by the comple-

mentary nature of heterogeneous resources. Since the natural 

gas industry has prospered in the past twenty-five years due to 

the incentive support from the Chinese government, a tremen-

dous increase in the development of the integrated power and 

natural gas systems (IPGSs) has been acknowledged. As a result, 

the optimal dispatch of IPGSs [1] and the expansion planning 

for IPGSs [2], [3] are becoming highly interested. 

One task for IPGSs is to investigate the problem of feasibility 

test for the stationary [4]-[6]. More specifically, can the system 

be operated in a way that satisfies the given boundary conditions? 

This feasibility problem of energy flows can be termed as a 

constraint satisfaction problem (CSP), which is a homogeneous 

collection of finite constraints over variables. To perform the 

feasibility check, generally, an auxiliary optimization model 

with any objective function should be set up, e.g., min 0, sub-

jected to a series of constraints. If the auxiliary optimization 

model is feasible, the CSP is feasible; otherwise, it is infeasible.  

However, the main challenge to analyze the IPGSs is the 

disjunctive nature from the gas flow equations. To address this 

issue, binary variables are introduced to capture the gas flow 

direction, leading the corresponding auxiliary optimization 

model to be a mixed integer nonlinear nonconvex programming 

(MINNP), which is still difficult to solve. Therefore, a piece-

wise linearization method was introduced in [7] for the non-

linear gas equations, which generated a mixed integer linear 
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programming (MILP). Moreover, a convex relaxation to the gas 

equations was adopted in [8], resulting in a mixed integer se-

cond order cone programming (MISOCP). 

Unfortunately, mixed integer programming is essentially 

NP-Complete, which is very time consuming for large-scale 

problems. This letter only focuses on the analysis of gas flow 

equations. To further alleviate the computational burden, a 

convex optimization model is proposed, whose Karush–Kuhn– 

Tucker (KKT) condition has the same mathematical structure. 

Furthermore, a tight linear program and a corollary are pro-

posed to check the feasibility and obtain the gas flow solution. 

II. PHYSICAL MODELING FOR NATURAL GAS NETWORKS 

Originally, the gas flow equations are described as a set of 

partial differential equations. In steady state, the gas dynamics 

along a pipe are ignored and the mass flux is assumed constant, 

which gives 

 mn mn mn m nf f C    ,      ,m n  , ,m n  (1a) 

mn nm m m

mn GF mn GT

f f G D
 

    ,     m        (1b) 

min max
m m m    ,   m                       (1c) 

max max
mn mn mnf f f   ,   ,m n                  (1d) 

min max
m m mG G G  ,  m                     (1d) 

where  is a set of natural gas nodes and  is a set of natural gas 

pipelines; m and n are the origin and end nodes for natural gas 

pipeline mn; Cmn is a Weymouth constant describing the loss 

coefficient of natural gas pipeline mn; fmn is the gas flow in 

pipeline mn; πm and πn are the squared node pressures in a nat-

ural gas network; GF is the set of natural gas pipelines with the 

node m being the origin node and GT is the set of natural gas 

pipelines with the node m being the end node; Gm and Dm is the 

gas generation and gas withdrawal at node m, respectively; 
min
m and max

m are the lower and upper bound of squared node 

pressure on node m, respectively; max
mnf is the maximum al-

lowable gas flow on the pipeline mn. 

Moreover, the constraint (1a) describes the squared pressure 

drop between two nodes is related to the gas flow on the pipeline. 

Especially, the direction of the gas flow determines the direction 

of the squared pressure drop. The constraint (1b) refers to the 

natural gas balance at each node. Constraints (1c)-(1d) are the 

bound limits for gas flows and squared node pressures. 

III. LINEAR PROGRAM FOR NATURAL GAS EQUATIONS 

Solving the CSP in (1) requires setting up an auxiliary opti-

mization model. In this letter, a new auxiliary optimization 

model to check the feasibility is first established, such that 
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 

2

,

min
3

mn mn

m n mn

f f
z

C

                         (2a) 

s.t.   =mn nm m m

mn GF mn GT

f f G D
 

   ,   m         (2b) 

min max
m m mG G G  ,  m                     (2c) 

It can be observed that (2b) are linear constraints and the 

objective function in (2a) is convex since the second derivative 

is positive semidefinite (i.e., 2 0mn mnf C  ). As a result, the 

above model in (2) is a convex optimization model that is easier 

to solve to achieve its global optimum in a polynomial time. The 

Lagrange function of the optimization model (2) is 

 
 

2

,

=
3

mn mn
mn m mn nm m m

mnm n mn GF mn GT

f f
L f f f G D

C


  

 
     

 
   (3) 

The optimal solution and corresponding multipliers 

 * *,mn mf  can be obtained by the KKT condition, such that 

 *

* * * *= + 0
mn

mn mn mn m n

mn

L f
f f C

f
 


 


,    ,m n     (4) 

which gives  

 * * * *=mn mn mn m nf f C   ,   ,m n              (5) 

It can be observed that (5) and (1a) have the same mathe-

matical structure, but the multipliers and gas flows may not 

satisfy the bound limits in (1c) and (1d). To check the feasibility, 

the following corollary is presented. 

Corollary: If the model in (2) is feasible and the corresponding 

multiplies from (2) satisfy (6), the gas flow equations in (1) are 

feasible; otherwise, (1) are infeasible. 

   

     

* max * min

2 2
max * * max

max min

/ / , ,

m m m m
mm

mn mn m n mn mnf C f C m n

   

 

  

   


     


 (6) 

Proof: It can be found in (5) that the equation is only related to 

the difference between two multipliers, and increasing the same 

value for all the multipliers will not break the equations. Thus, 

let * *
m m    , m  , where δ is an arbitrary real number, 

be the squared gas pressure on nodes m and n.  * *,mn mf   

strictly satisfies (1a) and (1b). 

To meet the constraints in (1c), it requires that δ should sat-

isfy 
min * max
m m m       for m  . That means, δ should 

satisfy
* max * min
m m m m         for m  , which gives 

   * max * minmax minm m m m
mm

   
  

                   (7a) 

Considering (1d) and substituting (5) into (1d), the limits on 

gas flows (1d) are shifted to the limits on π, which yields 

   
2 2

max * * max/ /mn mn m n mn mnf C f C     ,   ,m n    (7b) 

Thus, if the model in (2) is feasible, the constraints in (1a) and 

(1b) will hold; and meanwhile if the corresponding multiplies 

from (2) satisfy (7), constraints (1c) and (1d) will hold.              

(Q.E.D.) 

However, the high-order nonlinear optimization still faces 

difficulties in practice, such as the choice of the starting point, 

the non-differentiability of the objective function, and the 

convergence problem. In contrast, linear programs (LPs) are 

simpler and more robust than nonlinear solvers. Referring to 

(2a), it has a special structure that it is a separable function with 

respect to the gas flow variables. Such a function can be tightly 

linearized by polyhedra. 

Since the squared nodal gas pressure is limited, the maximum 

range of the gas flow can be obtained by (1a) and (1c), where 

 max max min
mn mn m nf C    . Let each nonlinear function in (2a) 

be  
2

3mn mn mn mnz f f C which can be linearized by Nmn 

piecewise linear functions (PWLFs). Let       0 2
, ,..., mnN

mn mn mnf f f  

denote the 1+Nmn breakpoints of fmn to its range and let 

      
2

3
i i i

mn mn mn mng f f C  denote the corresponding nonlinear 

function value of zmn at the i-th breakpoint. According to the 

λ-formulation [9], the LP model by the tight polyhedra can be 

formulated as 

 

 , 0

min
mnN

i

mn i

m n i

z g 
 

 
   

 
                      (8a) 

s.t.   =mn nm m m

mn GF mn GT

f f G D
 

   ,   m         (8b) 

 

0

=
mnN

i

mn mn i

i

f f 


 ,    ,m n                     (8c) 

0

=1
mnN

i

i




 ,  0i  ,    ,m n                   (8d) 

By solving the above tight LP model in (8), the model in (2) 

can be approximated. Thus, the optimal solution  * *,mn mf  can 

be obtained, and the feasibility check can be performed by 

means of the corollary. 

Discussions:  

(i) Let the approximation error of the piecewise linear func-

tion on zmn be εmn. If the optimal solutions of (2) and (8) are 
*

mnf and *
mng , respectively. We have 

 
   

2 2
* * * *

3 3

mn mn mn mn

mn mn

f f g g

C C
                       (9) 

where the approximation error is considered small enough, such 

that the gas flows *
mnf and

*
mng have the same sign (i.e., the 

approximation does not change the flow direction). The error on 

the KKT condition (5) can be expressed as (10). It can be found 

that the error of KKT condition is bounded, which means that 

decreasing εmn by increasing the number of segments will reduce 

the error on the KKT condition.  

 
   

* ** * * *

2 2
* * * *

3 +

+ +

mn mnmn mn mn mn

mn mn
mn mn mn mn

f gf f g g

C C g f g f


    (10) 
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Moreover, the error of εmn will not affect the inequalities in 

(7a) because the same error on *
m lies in both sides of the ine-

qualities. Meanwhile, the error of εmn will only lead to a 

bounded error on (7b) according to (10). 

(ii) It should be noted that both [7] and the proposed LP 

model need piecewise linearization. The piecewise linearization 

is implemented for nonconvex parts of the model in [7], which 

requires integers. By contrast, it is utilized in the proposed 

model for convex parts, which thus does not require integers. 

Moreover, compared (8) with (2), it can be found that the 

piecewise linearization is only used in the objective function. It 

is discussed in [10] that the convex optimization (2) can be 

tightly approximated by the LP with a prescribed accuracy if the 

number of segments is sufficient. 

(iii) It can be observed from (2) that the objective function 
2 / 3mn mn mnf f C is equivalent to

3/2 1/2 / 3m n mnC  , which ex-

pects to minimize the difference of multipliers at each pipeline. 

Hence, it is highly possible that the multipliers can satisfy (7) 

and this optimal solution is likely feasible.  

IV. NUMERICAL EXAMPLE 

The proposed LP model is verified on several real-life natural 

gas networks in European countries [11], and is compared with 

the traditional MILP [7] and MISOCP [8]. The three methods 

are performed on a laptop with an Intel® Core™ i5 Duo Pro-

cessor T440 (2.30 GHz) and 4 GB RAM, using the commercial 

solver GUROBI 7.5. In addition, we choose different numbers 

of segments (# of Seg.) to investigate the impact of the “ # of 

Seg.” on the computational performance. 

Firstly, under the given boundary conditions, all the test 

systems are feasible by the three methods (see “F.” in Table I). 

Moreover, 2000 nominations for the 582-node system are se-

lected with different boundary conditions (e.g., gas injection 

and withdrawal, physical limits, etc.). These boundary condi-

tions are given from the practical gas system operation in winter 

and summer. The results show that the none nomination is 

infeasible, which suggests that the corollary is mild in practice. 

Notably, the infeasibility can be enhanced by the compressors 

and the configuration of compressor stations.  

Secondly, Table I presents the computation time on eight test 

systems with 10, 50, and 100 segments. For small-scale test 

systems with a very few number of segments, all the three 

methods can be realized within acceptable computation time. In 

contrast, for large-scale test systems or the systems with many 

segments, the MILP or MISOCP models will require more time 

to compute. For instance, the computation time of the MILP 

model on the 584-node system with 50 segments is more than 2 

hours and the algorithms of the MILP and MISOCP will fail to 

solve the 4197-node system within an acceptable period of 5 

hours. In contrast, the proposed LP model can solve the gas 

equations on all the test systems within 5 seconds, which is more 

than 1000 times faster than the MILP and MISOCP methods.  

 Finally, the impact of the “# of Seg.” on the solution precision 

is explored. Here, the 14-node system is considered and the 

results are shown in Table II. Observations in Table II indicate 

that the gap of the MISOCP is very small which gives a precise 

optimal solution. Therefore, the MISOCP is chosen as the 

benchmark. For the LP and MIMP methods, the piecewise 

linearization may bring errors. Here, Error_V and Error_C are 

denoted as the maximum error of decision variables and 

constraints, respectively. With the increase of the number of 

segments, the errors of both LP and MILP methods become 

smaller and MILP needs relatively fewer segments than LP. For 

the precision of 10
-3

, the LP needs 50 segments while the MILP 

needs 20 segments. This is because the MILP is adopted to 

solve a quadratic function, while the LP is used to linearize a 

cubic function. The linearization for a high-order nonlinear 

function generally needs more segments. However, the 

computation time of the MILP with 20 segments is more than 

4.76 seconds, whereas the LP with 20 segments only takes 0.15 

seconds. This implies that the LP is always fast even though it 

needs more segments, especially for large-scale systems. 

Table I.   Computational performance on several systems. 

# of 

Nodes 
F. 

Time (s) 

10 Seg. 50 Seg. 100 Seg. 
MISOCP 

LP MILP LP MILP LP MILP 

11 √ 0.09 3.41 0.09 8.32 0.09 19.98 18.54 

14 √ 0.15 4.76 0.15 12.34 0.18 28.68 45.66 

20 √ 0.16 7.32 0.17 33.56 0.21 53.99 83.71 

24 √ 0.18 7.89 0.20 37.21 0.22 74.96 98.54 

40 √ 0.22 12.56 0.25 78.44 0.29 321.4 260.21 

134 √ 0.37 43.33 0.39 549.3 0.46 2653 1489.32 

582 √ 0.63 987.3 0.95 4596 1.48 16879 9825 

4197 √ 1.33 6487 3.42 >5h 7.72 >5h >5h 

Table II.   Impact of the “# of Seg.” on the solution precision. 

# of Seg. 
LP MILP MISOCP 

Error_V Error_C Error_V Error_C gap 

10 3.0576 0.3137 0.4463 0.0124 

3.45e-4 
20 0.4571 0.0628 0.0220 0.0041 

50 0.0819 0.0108 0.0054 0.0036 

100 0.0405 0.0022 0.0039 0.0008 
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