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In the initial alignment process of strapdown inertial navigation system (SINS), large initial misalignment angles always bring
nonlinear problem, which causes alignment failure when the classical linear error model and standard Kalman filter are used.
In this paper, the problem of large misalignment angles in SINS initial alignment is investigated, and the key reason for alignment
failure is given as the state covariance fromKalmanfilter cannot represent the true one during the steady filtering process. According
to the analysis, an alignment method for SINS based on multiresetting the state covariance matrix of Kalman filter is designed to
deal with large initial misalignment angles, in which classical linear error model and standard Kalman filter are used, but the state
covariance matrix should be multireset before the steady process until large misalignment angles are decreased to small ones. The
performance of the proposedmethod is evaluated by simulation and car test, and the results indicate that the proposedmethod can
fulfill initial alignment with large misalignment angles effectively and the alignment accuracy of the proposed method is as precise
as that of alignment with small misalignment angles.

1. Introduction

For its merits of complete independence, strong anti-
interference ability, comprehensive, and high update fre-
quency of navigation message, strapdown inertial navigation
system (SINS) has been widely used for military application
[1, 2]. As a navigationmethod based on integration operation,
initial alignment should be done in SINS before navigation
is started. The purpose of initial alignment of SINS is to
determine the attitude matrix from body frame to navigation
frame, that is, initial attitude, because initial velocity and
position are easy to determine by external navigation systems,
such as GPS [1–4]. In SINS alignment, misalignment angles
are defined as the Euler angles which describe the rotation
between calculated navigation frame and ideal navigation
frame [1].

The compassing alignment method based on compass
effect and the optimal estimation methods based on Kalman
filter (e.g., transfer alignment, zero-velocity alignment) are
the mostly used techniques to deal with alignment problems

in SINS [2–8]. Among these, zero-velocity is widely used as
external reference navigation information by virtue of the
characteristic of no linear velocity for static vehicles in zero-
velocity alignment due to its merits of allowing swinging
motion and no requirement for external navigation system.
The alignment process of zero-velocity can be divided into
two stages in chronological order: the first one is coarse
alignment based on analytical method and the second is fine
alignment based on Kalman filter [2, 7, 8]. Among these
stages, alignment result of coarse alignment is the precondi-
tion of fine one, and the accuracy of coarse alignment affects
the accuracy of fine alignment.

Error propagation model and filter method are two key
issues to addresswhenKalmanfilter ormethods derived from
Kalman filter are used to fulfill SINS alignment [2, 9]. The
equations describing SINS algorithm are a set of nonlinear
differential equations, so error propagation model of SINS
is also nonlinear essentially [10]. The classical linear error
propagation model either with 𝜙 or 𝜓 representations is
obtained by the assumption of small misalignment angles,
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and the standard Kalman filter can fulfill initial alignment
only with small misalignment angles when linear model is
used [1–9]. However, because of environmental disturbance
and sensor errors, large errors between initial attitude and
the true one, that is, large misalignment problems or non-
linear problems, are often generated in SINS when analytical
method is used for coarse alignment [11–15]. The problems
addressed in this paper are concentrated on the investigation
of initial alignment for SINS with large initial misalignment
angles caused by low accuracy of coarse alignment.

Recently, SINS error propagation models and nonlinear
estimation methods for large misalignment angles are widely
reported in the literatures. Error propagation models can
be divided into two types: one is nonlinear model for
large misalignment angles, among which the large azimuth
misalignment error model is the most representative [11];
the other is linearized method for nonlinear problem, which
gains linear model for large misalignment angles by approx-
imation or state transformation [12, 13]. Among nonlinear
filters, extended Kalman filter (EKF) is widely used, and
estimation methods based on approximate probability den-
sity distribution such as particle filter (PF) and unscented
Kalman filter (UKF) are also popular currently [14, 15].These
filters can solve nonlinear function directly by using the
evolution of probability density distributionwithout the need
of detailed expansion equations of nonlinear function. Large
misalignment problems can be solved with the above models
and methods to some extent. However, there are still many
shortages needed to be concerned, such as the complexity
problem in nonlinear error model for large misalignment
angles, state dimension extending problem in the lineariza-
tion process, and heavy computational problem in PF and
UKF. In addition, investigation on stability of the methods is
still blank field when PF and UKF are used in engineering.

For the purpose of simplifying error model without
adding computational load, an initial alignment method for
large initial misalignment angles is proposed based on clas-
sical linear error propagation model and standard Kalman
filter, in which the state covariance matrix of Kalman filter
is reset several times before the steady filtering process is

achieved. With the parameters resetting, the state covariance
from Kalman filter can truly represent the true one and
the high utilization of measurement vector can be ensured.
Coupled with the help of closed loop correction mode, large
misalignment angles can be converted into small ones, so that
alignment can be finished effectively.

The rest of this paper is organized as follows.The classical
linear error propagation model and standard Kalman filter
used in zero-velocity alignment are described in Section 2.
Then, the reason for alignment failure with large misalign-
ment angles is analyzed in Section 3, and a potential solution
method is proposed, which is verified by simulation. In
Section 4, the validity of the proposed method is further
verified by car test. Finally, some conclusions are given in
Section 5.

2. Error Propagation Model and Kalman Filter
for Zero-Velocity Alignment

2.1. System Equation. Choose velocity errors and misalign-
ment angles of SINS as the state variables, and then the state
vector of the system can be constructed as

X = [𝛿𝑉𝐸
𝛿𝑉
𝑁
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𝜙
𝑁
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, (1)
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are east and north velocity errors,
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of pitch, roll, and yaw, respectively. To vehicles running on
the earth surface, the height and upward velocity can be set
as zero. In this paper, east-north-up (ENU) is defined as
navigation frame 𝑛.

The system state equation can be constructed as [1]

̇X (𝑡) = A (𝑡)X (𝑡) +W (𝑡) , (2)

where A(𝑡) is the state matrix and W(𝑡) is the white system
process noise with the power spectral density Q. Based on
the classical linear error propagation model, the state matrix
A(𝑡) can be expressed as [1]
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Figure 1: Kalman filter with closed loop correction mode.

where 𝑉
𝐸
and 𝑉

𝑁
are the east and north velocity from SINS,

respectively,𝜔
𝑖𝑒
and𝑅 are the rotation angular rate and radius

of the Earth, respectively, 𝐿 is the latitude of vehicle position,
and 𝑓

𝐸
, 𝑓
𝑁
, and 𝑓

𝑈
denote the projection in 𝑛 frame of the

measured value f𝑏 by accelerometer in 𝑏 frame.

2.2. Measurement Equation. When the vehicle is static, the
zero-velocity information in navigation frame is used as
external reference and the measurement vector can be con-
structed as

Z = [𝑉𝐸
− 0 𝑉

𝑁
− 0]

T
= [𝛿𝑉𝐸

𝛿𝑉
𝑁]

T
, (4)

where Δ𝑉
𝐸
and Δ𝑉

𝑁
are the measurement variables, which

equal 𝑉
𝐸
and 𝑉

𝑁
from SINS, respectively.

The system measurement equation can be constructed as
[1]

Z (𝑡) = H (𝑡)X (𝑡) + V (𝑡) , (5)

whereH(𝑡) is measurementmatrix andV(𝑡) is the whitemea-
surement noise with the power spectral density R. According
to the relationship between measured vector and state vector,
H(𝑡) can be expressed as

H = [

1 0 0 0 0

0 1 0 0 0

] . (6)

2.3. Closed Loop Correction Mode. The system and measure-
ment equations given in Sections 2.1 and 2.2 are derived by the
assumption that initial misalignment angles are small. With
(2) and (5), SINS alignment with small initial misalignment
angles can be finished by standard Kalman filter, and the five
equations of standard Kalman filter will be demonstrated in
Section 3.1.

The “system” in (2) and (5) refers to the “error combina-
tion” of SINS navigation parameters. The state variables do
not participate in SINS navigation solution, whichmeans that
the SINS solution and error estimation based on (2) and (5)
are two independent processes. Based on this, closed loop
correction mode shown in Figure 1 is used to feed the esti-
mation of state variables back to SINS to correct navigation
parameters, and the sequent SINS navigation solution will be
carried out according to the corrected navigation parameters
once the correction operation is run. When misalignment
angles can be estimated by Kalman filter, the attitude curves
from SINS solution will gradually approach the true values
with the help of closed loop correctionmode; in other words,
the error attitude curves (misalignment angles) from SINS
solution will reduce to zero (or limit alignment values).

2.4. Simulation

2.4.1. Simulation Setting. Inertial measurement unit (IMU)
is composed of medium or low precision sensors. The gyro
constant bias is set as 0.1∘/h and random bias is white
Gaussian noise with zero mean and standard variance 0.1∘/h.
The accelerometer constant error is 500 ug and random error
is also white Gaussian noise with zero mean and standard
variance 500 ug. With the above assumption about sensor
precision, the limit alignment accuracy can be obtained by
zero-velocity alignment method as follows: pitch—−1.7189󸀠
(minute of degree); roll—1.7189󸀠; and yaw—−27.0248󸀠.

The vehicle is without linear movement, but with swing-
ing motion. The swinging amplitudes of pitch, roll, and
yaw are set as 1.8∘, 2.4∘, and 2.8∘, respectively, and the
corresponding oscillation cycle is 6, 8, and 10 s. Based on the
above ideal motion values, the ideal sensor output can be
gotten by back-stepping of navigation solution. When sensor
errors are added into ideal sensor output, the true sensor
data can be obtained, with which navigation solution and
alignment operation can be run.Meanwhile, the idealmotion
values can be used as references to judge the alignment results
with different initial misalignment angles.

The initial parameters for Kalman filter are set as

X
0
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T
,

P
0
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∘
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)
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∘
)

2
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∘
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2
] ,

R = diag [(0.1m/s)2 (0.1m/s)2] .
(7)

There is no unified definition about the magnitude of
large misalignment angles in SINS until now. To show how
the initialmisalignment angles with differentmagnitudes will
affect alignment results, the following five sets of different
misalignment angles are used in simulation: Condition 1𝜙

0
=

[0

∘
0

∘
0

∘
]

T; Condition 2𝜙
0
= [5

∘
5
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]
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0
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∘
5

∘
10

∘
]

T; Condition 4 𝜙
0
= [5

∘
5

∘
20

∘
]

T; Condition 5
𝜙
0
= [5

∘
5

∘
30

∘
]

T. Generally speaking, the level alignment
accuracy is much higher than that of azimuth one obtained
by coarse alignment with analytical method, so the level
misalignment angles from Condition 2 to Condition 5 are all
set as 5∘.

In simulation, the update cycle of sensor data, navigation
parameter, and alignment filtering are all set as 10ms, and the
statistical period is set as 1 s.
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Figure 2: Alignment results with different initial misalignment angles.

2.4.2. Simulation Results. The simulation lasts for 900 s, and
the misalignment angle curves of different conditions are
shown in Figure 2. It can be seen that all misalignment curves
can converge to the curves of limit alignment accuracy in
a short time under Conditions 1 and 2; under Condition
3, misalignment curves can converge but with a longer
time than those of Conditions 1 and 2; under Condition 4,
misalignment curves can converge but with a longer time and
larger errors, while under Condition 5, misalignment curves
cannot converge.

3. Analysis for Alignment Failure and
an Improved Method

3.1. Analysis for Alignment Failure. The simulation results
in Section 2.4.2 indicate that there is a close relationship
between initial misalignment angles and alignment results
when the classical linear error propagation model and stan-
dard Kalman filter are used for zero-velocity alignment.
Larger initial misalignment angles will produce lower accu-
racy, even alignment failure, so this alignmentmethod cannot
deal with nonlinear problems caused by large misalignment
angles.

Nevertheless, the simulation results in Figure 2 also
show that there is a convergence trend for all five different
conditions at the beginning process, that is, 0–100 s in
Figure 2(c). Maybe this short convergence process implies
that Kalman filter can estimate misalignment angles to some

extent, though the estimation is not very accurate. In view
of this, the change of the state covariance from Kalman
filter is further studied and compared with the true one. For
the sake of brevity, Figure 3 only shows the covariance of
yaw under Conditions 1 and 5, where the true covariance of
yaw can be calculated according to the alignment error in
Figure 2(c) with square operation. The curves in Figure 3
indicate that, under the condition of small misalignment
angles, the covariance of yaw fromKalman filter is larger than
the true one throughout the alignment process, while under
the condition of large misalignment angles, the covariance
is larger than the true one only at the beginning and one
short period during the alignment and smaller than the
true one during the whole steady filtering process. Here,
the period of 300–900 s, during which the change of P
is smooth, is defined as the steady filtering process. The
differences between Figures 3(a) and 3(b) indicate that the
state covariance fromKalman filter cannot truly represent the
true covariance of state vector under the condition of large
misalignment angles.

In order to evaluate the effect of P on alignment results,
the equations composing standard Kalman filter are further
studied.The five equations of standardKalman filter are listed
as follows [2, 9, 11–15].

Prediction for state vector

̂X
𝑘/𝑘−1

= Φ
𝑘,𝑘−1

̂X
𝑘−1

. (8)
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Figure 3: Comparison of state covariance.

Update for state vector

̂X
𝑘
=

̂X
𝑘/𝑘−1

+ K
𝑘
(Z
𝑘
−H
𝑘
̂X
𝑘/𝑘−1

) . (9)

Calculation for gain

K
𝑘
= P
𝑘/𝑘−1

HT
𝑘
(H
𝑘
P
𝑘/𝑘−1

HT
𝑘
+ R
𝑘
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−1

. (10)

Prediction for state covariance

P
𝑘/𝑘−1

= Φ
𝑘,𝑘−1

P
𝑘−1
Φ

T
𝑘,𝑘−1

+Q
𝑘−1

. (11)

Update for state covariance

P
𝑘
= (I − K

𝑘
H
𝑘
)P
𝑘/𝑘−1

. (12)

In the above equations, the subscript 𝑘 denotes the 𝑘th
time-step, ̂X denotes the estimation of state vector, Φ

𝑘,𝑘−1
is

the translation matrix which is a discretization of A(𝑡) in (2),
and K

𝑘
is the gain matrix which represents the utilization

degree between the measurement vector and prediction for
state vector. In Kalman filter, a larger K

𝑘
means a higher

utilization degree of measurement vector.
Furthermore, by analyzing the relationship between (10)

and (11), it can be drawn that, with a fixed 𝑘, all parameters in
(8)–(12) will be fixed; with a larger P

𝑘−1
, a larger P

𝑘/𝑘−1
in (11)

will be produced and a larger K
𝑘
in (10) will be generated,

which leads to a higher utilization degree of measurement
vector.

The above analysis indicates that Kalman filter can use
measurement vector with a higher utilization degree during
the whole alignment process under the condition of small
misalignment angles, while under the condition of large
misalignment angles, Kalman filter cannot because the P is
smaller than true ones during the steady filtering process.
At the same time, the convergence trends in Figure 2 at the
beginning of alignment process can be attributed to large

initial parameters of Kalman filter; that is, the initial P
0
is

much larger than the true ones.
Based on the above analysis, it can be concluded that,

under large misalignment condition, the change of state
covariance from Kalman filter cannot truly represent that
of state vector, and Kalman filter cannot utilize external
reference navigation information effectively. It should be one
of the key reasons which lead to the alignment failure when
the classical linear error propagation model and standard
Kalman filter are used for zero-velocity alignment with large
misalignment angles.

3.2. A Possible Way to Solve This Problem

3.2.1. Kalman Filter with the Parameters Resetting. In align-
ment process, in order to get a higher convergence speed and
make full use of external reference information, initial P

0
is

usually set as a large value when Kalman filter is used.
Based on the understanding about the effect of P and

initial setting of P
0
, an initial alignment method for SINS

based on multiresetting Kalman filter parameters as shown
in Figure 4 is designed in this paper. In this method,
the classical linear error propagation model and standard
Kalman filter are used, but the parameters of Kalman filter
will be reset before the steady filtering process to ensure
the state covariance larger than the true one and improve
utilization degree of measurement vector. In Figure 4, Δ𝑡
denotes the update cycle of sensor data, navigation solution,
and alignment filtering; Δ𝑇 denotes the parameter resetting
cycle; Δ𝑇 denotes the resetting number.

During the alignment process based on parameter reset-
ting, at themoment 𝑡

0
, the coarse alignment results will be set

as initial parameter for SINS solution and initial parameters
such as P

0
will be set to Kalman filter; at the moment

𝑡
1
, the state covariance will be set to initial value; that is,

P ⇒ P
0
; when the preset resetting times are finished, no
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resetting but normal alignment will be done. According to
the parameters defined in Kalman filter, the matrixes Q and
R that denote the process noise and measurement noise,
respectively, will remain unchanged when the instrument
precision and operating condition remain unchanged; thus
the resetting operation to Kalman filter parameters refers in
particular to P in the proposed method.

As mentioned in Section 2.3, Kalman filter and SINS
solution are two independent processes, so resetting Kalman
filter parameters will only affect the parameters of the filter
and the state estimation but have no effect on navigation
parameters.That is to say, the state estimation before resetting
(the convergence result at the beginning of filtering) will be
preserved in SINS navigation solution.With the help of reset-
ting and closed loop correction mode, large misalignment
angles can be gradually converged to small ones until the
classical linear error propagation model can be applied.

3.2.2. Analysis of the Proposed Method

(1) Analysis of Advantages and Disadvantages. Obviously,
the proposed method in Section 3.2.1 adopts the standard
Kalman filter rather than nonlinear filter, such as UKF and
PF; thus it owns the advantage of less calculation. At the same
time, it adopts the classical linear error propagation model
rather nonlinear model; thus it owns less calculation and
simplified model.

But during alignment process, the resetting operation
should be executed several times, and accordingly the stable
process of filtering should be done at the same times passively.
Thus, a disadvantage about this method is the prolonged
alignment time.

(2) Two Problems about the Proposed Method. Two problems
caused by the resetting operation should be solved. The first
one is how to select the resetting cycle and the second is how
to select the resetting times. Generally speaking, there are two
solutions to these problems. The first one is a fixed resetting

cycle and resetting times which can be preset according to
the instrument precision and operation condition, and the
second one is adaptive ones which can be set adaptively
according to some criteria. Obviously, the second is an ideal
method, but it is difficult to be fulfilled.

The aim of this paper is to find an alignment method for
SINS with large initial misalignment angles without adding
model complexity and adding computational load; thus no
general or adaptive rules about the selection of resetting cycle
and times are studied. In the rest of this paper, fixed resetting
cycle and times are selected.

In engineering, a certain safety factor should be added to
the above parameters to ensure a successful alignment; thus
the alignment time will further be prolonged.

3.3. Simulation

3.3.1. Simulation Setting. The simulation is conducted under
the same conditions as those in Section 2.4.1, and Condition
5 is used to verify the validity of the proposed method.

3.3.2. Simulation Results. The simulation lasts for 900 s, and
the P of Kalman filter is reset at 50 s, 100 s, and 150 s,
respectively, during alignment. The curves of misalignment
angles are shown in Figure 5, where the curves from Sec-
tion 2.4.2 under Condition 1 are also given for comparison. In
Figure 5(c), the dotted lines perpendicular to the horizontal
coordinate denote the resetting moment. The comparison of
state covariance fromKalman filter under Conditions 1 and 5,
with the true one underCondition 5 as the reference, is shown
in Figure 6.

The curves in Figure 5 indicate that initial alignment
can be fulfilled by the classical linear error propagation and
standard Kalman filter after resetting the covariance matrix
three times. And the partial enlargement in Figure 5(c)
indicates that the alignment accuracy processed for 600 s
is as precise as that with small initial misalignment angles.
The curves also show that there are two added passive stable
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Figure 5: Alignment results with state covariance resetting.

processes compared with those in Figure 3, which is caused
by the operation of resetting.

The curves in Figure 6 indicate that the covariance of yaw
from Kalman filter under Condition 5 is larger than that of
true one during thewhole alignment process. Comparedwith
that in Figure 3, the true covariance gradually converges to a
small value, and when the alignment is processed for 600 s,
the covariance from Kalman filter under Conditions 1 and
5 are approximately equal, which means that the alignment
accuracy are approximately equal at that moment as shown
in Figure 5(c).

From the above analysis, it can be concluded that, with
the resetting to the state covariance of Kalman filter, initial
alignment for SINSwith large initial misalignment angles can
be fulfilled with classical linear error propagation model and
standard Kalman filter.

4. Car Test

4.1. Test Setup. Considering the small angular motion with-
out linear movement caused by engine vibration under
shutdown condition, the car test is executed to verify the
validity of the proposed alignment method. The fiber-optic
gyro SINS as shown in Figure 7 is provided by Southeast
University and the precision parameters of sensor are listed in
Table 1. In this type of SINS, the update frequencies of sensor
data and navigation data are both 100Hz, and PC104 with a
CPU frequency of 1 GHz is used as the navigation computer.

Table 1: Instrument precision of SINS.

Gyro Accelerometer
Zero bias <0.03∘/h Zeros bias ±5 × 10−5 g
Random walk
coefficient <0.005∘/h Zero bias stability <4 × 10−4 g

Scale factor error <20 ppm Scale factor error <100 ppm

Table 2: Accuracy of PHINS.

Azimuth Level attitude
0.05∘ secant latitude (without GPS aid) Less than 0.01∘

The navigation parameters from PHINS—a high precision
SINS from IxSea, France, as shown in Figure 7—are used as
reference. The precision of PHINS is listed in Table 2.

Three different alignment schemes as follows are com-
pared: Scheme 1: standard Kalman filter with small initial
misalignment angles; Scheme 2: standard Kalman filter with
large initialmisalignment angles; Scheme 3: standardKalman
filter with large initial misalignment angles but with resetting
operation. For the three schemes, the filtering frequencies are
all set as 100Hz and the classical linear error propagation
model is used for the calculation.

The test is run as offline semiphysical simulation based
on the saved data. Before fine alignment, analytical coarse
alignment is executed.The results of coarse alignment can be
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FOG-SINS PHINS

Figure 7: SINS and PHINS in car.

Table 3: Statistic results of Scheme 1, Scheme 3, and PHINS.

Pitch Roll Yaw
Mean Std. Mean Std. Mean Std.

PHINS (∘) −0.8292 0.0011 −0.2441 0.0046 85.5903 0.0024
Scheme 1 (∘) −0.8200 0.0092 −0.2433 0.0056 84.6823 0.3092
Scheme 3 (∘) −0.8202 0.0098 −0.2455 0.0061 85.0917 0.1906

considered as small misalignment angles because the sensors
used in this test are high and the vibration caused by engine
is small. To simulate large misalignment angles, the angles
[5

∘
5

∘
30

∘
]

T are added to the coarse alignment results.
During the alignment process in Scheme 3, the P of

Kalman filter is reset at 50 s, 100 s, 150 s, and 200 s, respec-
tively.

4.2. Test Results. The curves of alignment results from differ-
ent schemes are shown in Figure 8.The trends and oscillating
processes in Figure 8 are similar to those in Figure 5. The
alignment results in Figure 8 indicate that standard Kalman
filter can fulfill initial alignment with small initial mis-
alignment angles but cannot with large initial misalignment
angles, while standard Kalman filter with multiresetting can
fulfill alignment with large initial misalignment angles.

Table 3 lists the statistic results in 300∼500 s of Scheme 1,
Scheme 3, and PHINS. According to the attitude of PHINS,
alignment accuracy of Scheme 3 is as precise as that of Scheme
1 after alignment for 300 s.

From Figure 8 and Table 3, it can be concluded that, with
the help of multiresetting, zero-velocity alignment with large
initial misalignment angles can be fulfilled when classical

linear error propagation model and standard Kalman filter
are used.

4.3. Further Comparison between Simulation and Car Test.
In Section 3.3, three times of resetting are required to fulfill
alignment, while in Section 4.2, four times are required.
There are two possible reasons for this difference: the first
is that it is easy to find a set of Kalman parameters fit for
sensors in simulation, while it is difficult in engineering, and
the second is that the initial misalignment angles are larger
in car test than those in simulation because of the added
coarse alignment errors. Although no general rules about the
selection of resetting times are proposed in this paper, the
difference in Sections 3.3 and 4.2 implies that more resetting
times are needed when larger initial misalignment angles
appear.

5. Conclusions

The problem of large misalignment angles in SINS initial
alignment is investigated in this paper, and simulation results
verified that nonlinear problem brought by large initial
misalignment angles will cause alignment failure when the
classical linear error model and standard Kalman filter are
used.The reasons for alignment failure are discussed in detail,
and the analysis indicates that the state covariance of Kalman
filter is smaller than the true one and the measurement
vector cannot be effectively utilized during the steady filtering
process. At the same time, the simulation also shows that
there is a convergence trend for misalignment angles at the
beginning of alignment process when the state covariance is
much larger than the true one.



Mathematical Problems in Engineering 9

100 200 300 400 500 600 700 800 900

500 520 540 560 580 PHINS

Scheme 2 Scheme 1   

Scheme 3 

t (s)

−0.9

−0.8

−0.82−0.8

−0.7

A
ng

le
 (∘
)

(a) Pitch

100 200 300 400 500 600 700 800 900

500 520 540 560 580
PHINS

Scheme 2 
Scheme 3 

Scheme 1 

−0.15

−0.2

−0.25

−0.26
−0.25
−0.24

A
ng

le
 (∘
)

t (s)

(b) Roll

100 200 300 400 500 600 700 800 900
60

70

80

90

520 530 540 550 560

85

85.5
PHINS

Scheme 2 Scheme 1 
Scheme 3 

t (s)

A
ng

le
 (∘
)

(c) Yaw

Figure 8: Alignment results with resetting in car test.

Based on the analysis of state covariance, an initial
alignmentmethod for SINS is designed, in which the classical
linear error propagation model and standard Kalman filter
with multiresetting are used. The state covariance of Kalman
filter is reset several times before the steady filtering process
and ensures the state covariance larger than the true one,
which improves the utilization degree ofmeasurement vector.
This proposed method does not change the classical error
propagation model and filter structure and owns the merits
of simple model and less calculation.

Simulation and car test results both indicate that the
proposed method can fulfill initial alignment with large
initial misalignment angles effectively and the alignment
accuracy can be as precise as that with small ones.
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