1,478 research outputs found

    Constrained Lp-Approximation by Generalized n-Convex Functions Induced by ECT-Systems

    Get PDF
    AbstractThe problem of finding a best Lp-approximation (1 ≤ p < ∞) to a function in Lp from a special subcone of generalized n-convex functions induced by an ECT-system is considered. Tchebycheff splines with a countably infinite number of knots are introduced and best approximations are characterized in terms of local best approximations by these splines. Various properties of best approximations and their uniqueness in L1 are investigated. Some special results for generalized monotone and convex cases are obtained

    Hard diffractive quarkonium hadroproduction at high energies

    Full text link
    We present a study of heavy quarkonium production in hard diffractive process by the Pomeron exchange for Tevatron and LHC energies. The numerical results are computed using recent experimental determination of the diffractive parton density functions in Pomeron and are corrected by unitarity corrections through gap survival probability factor. We give predictions for single as well as central diffractive ratios. These processes are sensitive to the gluon content of the Pomeron at small Bjorken-x and may be particularly useful in studying the small-x physics. They may also be a good place to test the different available mechanisms for quarkonium production at hadron colliders.Comment: 7 pages, 3 figures, 1 table. Final version to be published in European Physical Journal

    Supersymmetric Regularization, Two-Loop QCD Amplitudes and Coupling Shifts

    Get PDF
    We present a definition of the four-dimensional helicity (FDH) regularization scheme valid for two or more loops. This scheme was previously defined and utilized at one loop. It amounts to a variation on the standard 't Hooft-Veltman scheme and is designed to be compatible with the use of helicity states for "observed" particles. It is similar to dimensional reduction in that it maintains an equal number of bosonic and fermionic states, as required for preserving supersymmetry. Supersymmetry Ward identities relate different helicity amplitudes in supersymmetric theories. As a check that the FDH scheme preserves supersymmetry, at least through two loops, we explicitly verify a number of these identities for gluon-gluon scattering (gg to gg) in supersymmetric QCD. These results also cross-check recent non-trivial two-loop calculations in ordinary QCD. Finally, we compute the two-loop shift between the FDH coupling and the standard MS-bar coupling, alpha_s. The FDH shift is identical to the one for dimensional reduction. The two-loop coupling shifts are then used to obtain the three-loop QCD beta function in the FDH and dimensional reduction schemes.Comment: 44 pages, minor corrections and clarifications include

    Wick type deformation quantization of Fedosov manifolds

    Get PDF
    A coordinate-free definition for Wick-type symbols is given for symplectic manifolds by means of the Fedosov procedure. The main ingredient of this approach is a bilinear symmetric form defined on the complexified tangent bundle of the symplectic manifold and subject to some set of algebraic and differential conditions. It is precisely the structure which describes a deviation of the Wick-type star-product from the Weyl one in the first order in the deformation parameter. The geometry of the symplectic manifolds equipped by such a bilinear form is explored and a certain analogue of the Newlander-Nirenberg theorem is presented. The 2-form is explicitly identified which cohomological class coincides with the Fedosov class of the Wick-type star-product. For the particular case of K\"ahler manifold this class is shown to be proportional to the Chern class of a complex manifold. We also show that the symbol construction admits canonical superextension, which can be thought of as the Wick-type deformation of the exterior algebra of differential forms on the base (even) manifold. Possible applications of the deformed superalgebra to the noncommutative field theory and strings are discussed.Comment: 20 pages, no figure

    Prospects in the orbital and rotational dynamics of the Moon with the advent of sub-centimeter lunar laser ranging

    Get PDF
    Lunar Laser Ranging (LLR) measurements are crucial for advanced exploration of the laws of fundamental gravitational physics and geophysics. Current LLR technology allows us to measure distances to the Moon with a precision approaching 1 millimeter. As NASA pursues the vision of taking humans back to the Moon, new, more precise laser ranging applications will be demanded, including continuous tracking from more sites on Earth, placing new CCR arrays on the Moon, and possibly installing other devices such as transponders, etc. Successful achievement of this goal strongly demands further significant improvement of the theoretical model of the orbital and rotational dynamics of the Earth-Moon system. This model should inevitably be based on the theory of general relativity, fully incorporate the relevant geophysical processes, lunar librations, tides, and should rely upon the most recent standards and recommendations of the IAU for data analysis. This paper discusses methods and problems in developing such a mathematical model. The model will take into account all the classical and relativistic effects in the orbital and rotational motion of the Moon and Earth at the sub-centimeter level. The new model will allow us to navigate a spacecraft precisely to a location on the Moon. It will also greatly improve our understanding of the structure of the lunar interior and the nature of the physical interaction at the core-mantle interface layer. The new theory and upcoming millimeter LLR will give us the means to perform one of the most precise fundamental tests of general relativity in the solar system.Comment: 26 pages, submitted to Proc. of ASTROCON-IV conference (Princeton Univ., NJ, 2007

    Electronic structure, phase stability and chemical bonding in Th2_2Al and Th2_2AlH4_4

    Full text link
    We present the results of theoretical investigation on the electronic structure, bonding nature and ground state properties of Th2_2Al and Th2_2AlH4_4 using generalized-gradient-corrected first-principles full-potential density-functional calculations. Th2_2AlH4_4 has been reported to violate the "2 \AA rule" of H-H separation in hydrides. From our total energy as well as force-minimization calculations, we found a shortest H-H separation of 1.95 {\AA} in accordance with recent high resolution powder neutron diffraction experiments. When the Th2_2Al matrix is hydrogenated, the volume expansion is highly anisotropic, which is quite opposite to other hydrides having the same crystal structure. The bonding nature of these materials are analyzed from the density of states, crystal-orbital Hamiltonian population and valence-charge-density analyses. Our calculation predicts different nature of bonding for the H atoms along aa and cc. The strongest bonding in Th2_2AlH4_4 is between Th and H along cc which form dumb-bell shaped H-Th-H subunits. Due to this strong covalent interaction there is very small amount of electrons present between H atoms along cc which makes repulsive interaction between the H atoms smaller and this is the precise reason why the 2 {\AA} rule is violated. The large difference in the interatomic distances between the interstitial region where one can accommodate H in the acac and abab planes along with the strong covalent interaction between Th and H are the main reasons for highly anisotropic volume expansion on hydrogenation of Th2_2Al.Comment: 14 pages, 9 figure

    Dissociation cross sections of ground-state and excited charmonia with light mesons in the quark model

    Get PDF
    We present numerical results for the dissociation cross sections of ground-state, orbitally- and radially-excited charmonia in collisions with light mesons. Our results are derived using the nonrelativistic quark model, so all parameters are determined by fits to the experimental meson spectrum. Examples of dissociation into both exclusive and inclusive final states are considered. The dissociation cross sections of several C=(+) charmonia may be of considerable importance for the study of heavy ion collisions, since these states are expected to be produced more copiously than the J/psi. The relative importance of the productions of ground-state and orbitally-excited charmed mesons in a pion-charmonium collision is demonstrated through the s\sqrt {s}-dependent charmonium dissociation cross sections.Comment: 9 pages, 8 figure

    Fine Splitting of Electron States in Silicon Nanocrystal with a Hydrogen-like Shallow Donor

    Get PDF
    Electron structure of a silicon quantum dot doped with a shallow hydrogen-like donor has been calculated for the electron states above the optical gap. Within the framework of the envelope-function approach we have calculated the fine splitting of the ground sixfold degenerate electron state as a function of the donor position inside the quantum dot. Also, dependence of the wave functions and energies on the dot size was obtained

    Comparative Study of Multifragmentation of Gold Nuclei Induced by Relativistic Protons, 4^4He, and 12^{12}C

    Full text link
    Multiple emission of intermediate-mass fragments has been studied for the collisions of p, 4^4He and 12^{12}C on Au with the 4π4\pi setup FASA. The mean IMF multiplicities (for the events with at least one IMF) are saturating at the value of 2.2±0.22.2\pm0.2 for the incident energies above 6 GeV. The observed IMF multiplicities cannot be described in a two-stage scenario, a fast cascade followed by a statistical multifragmentation. Agreement with the measured IMF multiplicities is obtained by introducing an intermediate phase and modifying empirically the excitation energies and masses of the remnants. The angular distributions and energy spectra from the p-induced collisions are in agreement with the scenario of ``thermal'' multifragmentation of a hot and diluted target spectator. In the case of 12^{12}C+Au(22.4 GeV) and 4^4He(14.6 GeV)+Au collisions, deviations from a pure thermal break-up are seen in the energy spectra of the emitted fragments, which are harder than those both from model calculations and from the measured ones for p-induced collisions. This difference is attributed to a collective flow.Comment: 33 pages 15 figures, accepted in Nucl. Phys.

    Recent glitches detected in the Crab pulsar

    Full text link
    From 2000 to 2010, monitoring of radio emission from the Crab pulsar at Xinjiang Observatory detected a total of nine glitches. The occurrence of glitches appears to be a random process as described by previous researches. A persistent change in pulse frequency and pulse frequency derivative after each glitch was found. There is no obvious correlation between glitch sizes and the time since last glitch. For these glitches Δνp\Delta\nu_{p} and Δν˙p\Delta\dot{\nu}_{p} span two orders of magnitude. The pulsar suffered the largest frequency jump ever seen on MJD 53067.1. The size of the glitch is ∼\sim 6.8 ×10−6\times 10^{-6} Hz, ∼\sim 3.5 times that of the glitch occured in 1989 glitch, with a very large permanent changes in frequency and pulse frequency derivative and followed by a decay with time constant ∼\sim 21 days. The braking index presents significant changes. We attribute this variation to a varying particle wind strength which may be caused by glitch activities. We discuss the properties of detected glitches in Crab pulsar and compare them with glitches in the Vela pulsar.Comment: Accepted for publication in Astrophysics & Space Scienc
    • …
    corecore