361 research outputs found

    Research on Embedded Sensors for Concrete Health Monitoring Based on Ultrasonic Testing

    Get PDF
    In this article, embedded ultrasonic sensors were prepared using 1–3-type piezoelectric composite and piezoelectric ceramic as the piezoelectric elements, respectively. The frequency bandwidth of the novel embedded ultrasonic sensors was investigated. To obtain the relationship between the receiving ultrasonic velocity and compressive strength, as well as their response signals to crack damage, the sensors were fabricated and embedded into the cement mortar before testing. The results demonstrated that the piezoelectric composite sensor had wider frequency bandwidth than the piezoelectric ceramic sensor. The compressive strength and ultrasonic velocity had a positive linear relationship, with a correlation coefficient of 0.9216. The head wave amplitude of the receiving ultrasonic signal was sensitive to the changing crack damage and gradually decayed with the increasing degree of cement damage. Thus, the novel embedded ultrasonic sensors are suitable for concrete health monitoring via ultrasonic non-destructive testing

    Relationship between intrinsic viscosity, thermal, and retrogradation properties of amylose and amylopectin

    Get PDF
    The relationships between intrinsic viscosity and some properties of amylose and amylopectin were investigated. The intrinsic viscosities determined by Ubbelohde viscometer for rice, maize, wrinkled pea and potato amyloses were 46.28 ± 0.30, 123.94 ± 0.62, 136.82 ± 0.70, and 167.00 ± 1.10 ml/g, respectively; and the intrinsic viscosities of rice, maize, wrinkled pea and potato amylopectins were 77.28 ± 0.90, 154.50 ± 1.10, 162.56 ± 1.20 and 178.00 ± 1.00 ml/g, respectively. The thermal and retrogradation properties of amylose and amylopectin were investigated by differential scanning calorimeter (DSC). Results showed that the thermal enthalpy (ΔHg) was positively correlated with intrinsic viscosity, however, the onset and peak temperatures were not related to the intrinsic viscosity. The amylose and amylopectin retrogradation enthalpy values were negatively related to intrinsic viscosity, while the onset and peak temperature values of retrograded amylose and amylopectin were not related to the intrinsic viscosity during storage (except one-day storage). Furthermore, the onset and peak temperatures and retrogradation enthalpy of amylose and amylopectin changed slowly during storage at 4°C

    Design, Fabrication, and Properties of 2-2 Connectivity Cement/Polymer based Piezoelectric Composites with Varied Piezoelectric Phase Distribution

    Get PDF
    The laminated 2-2 connectivity cement/polymer based piezoelectric composites with variedpiezoelectric phase distribution were fabricated by employing Lead Zirconium Titanate ceramicas active phase, and mixture of cement powder, epoxy resin, and hardener as matrix phase with a mass proportion of 4:4:1. The dielectric, piezoelectric, and electromechanical coupling properties of the composites were studied. The composites with large total volume fraction ofpiezoelectric phase have large piezoelectric strain constant and relative permittivity, and thepiezoelectric and dielectric properties of the composites are independent of the dimensional variations of the piezoelectric ceramic layer. The composites with small total volume fraction of piezoelectric phase have large piezoelectric voltage constant, but also large dielectric loss. The composite with gradually increased dimension of piezoelectric ceramic layer has the smallest dielectric loss, and that with the gradually increased dimension of matrix layer has the largest piezoelectric voltage constant. The novel piezoelectric composites show potential applications in fabricating ultrasonic transducers with varied surface vibration amplitude of thetransducer

    Dynamic spin-lattice coupling and nematic fluctuations in NaFeAs

    Full text link
    We use inelastic neutron scattering to study acoustic phonons and spin excitations in single crystals of NaFeAs, a parent compound of iron pnictide superconductors. NaFeAs exhibits a tetragonal-to-orthorhombic structural transition at Ts≈58T_s\approx 58 K and a collinear antiferromagnetic (AF) order at TN≈45T_N\approx 45 K. While longitudinal and out-of-plane transverse acoustic phonons behave as expected, the in-plane transverse acoustic phonons reveal considerable softening on cooling to TsT_s, and then harden on approaching TNT_N before saturating below TNT_N. In addition, we find that spin-spin correlation lengths of low-energy magnetic excitations within the FeAs layer and along the cc-axis increase dramatically below TsT_s, and show weak anomaly across TNT_N. These results suggest that the electronic nematic phase present in the paramagnetic tetragonal phase is closely associated with dynamic spin-lattice coupling, possibly arising from the one-phonon-two-magnon mechanism

    Unusual double-peak specific heat and spin freezing in a spin-2 triangular lattice antiferromagnet FeAl2_{2}Se4_{4}

    Full text link
    We report the properties of a triangular lattice iron-chalcogenide antiferromagnet FeAl2_{2}Se4_{4}. The spin susceptibility reveals a significant antiferromagnetic interaction with a Curie-Weiss temperature {\Theta}CW_{CW} ~ -200K and a spin-2 local moment. Despite a large spin and a large |{\Theta}CW_{CW}|, the low-temperature behaviors are incompatible with conventional classical magnets. No long-range order is detected down to 0.4K. Similar to the well-known spin-1 magnet NiGa2_{2}S4_{4}, the specific heat of FeAl2_{2}Se4_{4} exhibits an unusual double-peak structure and a T2^{2} power law at low temperatures, which are attributed to the underlying quadrupolar spin correlations and the Halperin-Saslow modes, respectively. The spin freezing occurs at ~ 14K, below which the relaxation dynamics is probed by the ac susceptibility. Our results are consistent with the early theory for the spin-1 system with Heisenberg and biquadratic spin interactions. We argue that the early proposal of the quadrupolar correlation and gauge glass dynamics may be well extended to FeAl2_{2}Se4_{4}. Our results provide useful insights about the magnetic properties of frustrated quantum magnets with high spins.Comment: 7 pages, 4 figure

    MixCT: Mixing Confidential Transactions from Homomorphic Commitment

    Get PDF
    Mixing protocols serve as a promising solution to the unlinkability in blockchains. They work by hiding one transaction among a set of transactions and enjoy the advantage of high compatibility with the underlying system. However, due to the inherently public nature of the blockchains built on the account-based model, the unlinkability is highly restricted to non-confidential transactions. In the account-based model, blockchains supporting confidential payments need to trade their compatibility for unlinkability. In this paper, we propose MixCT, a generic protocol that provides the mixing service for confidential payment systems built from homomorphic commitment in the account-based model. We formally define the security goals including safety and availability, and prove that our generic construction satisfies them. Furthermore, we provide an efficient instantiation of MixCT by the Pedersen commitment and the one-out-of-many proof. The evaluation results show that MixCT introduces a small cost for its users while being highly compatible with the underlying confidential blockchain

    A Nonlinear Wind Turbine Wake Expansion Model Considering Atmospheric Stability and Ground Effects

    Get PDF
    This study investigates the influence of atmospheric stability and ground effects on wind turbine wake recovery, challenging the conventional linear relationship between turbulence intensity and wake expansion coefficient. Through comprehensive field measurements and numerical simulations, we demonstrate that the linear wake expansion assumption is invalid at far-wake locations under high turbulence conditions, primarily due to ground effects. We propose a novel nonlinear wake expansion model that incorporates both atmospheric stability and ground effects by introducing a logarithmic relationship between the wake expansion coefficient and turbulence intensity. Validation results reveal the superior prediction accuracy of the proposed model compared to typical engineering wake models, with root mean square errors of wake wind speed predictions ranging from 0.04 to 0.063. The proposed model offers significant potential for optimizing wind farm layouts and enhancing overall wind energy production efficiency

    Precursory characteristics and disaster prevention of rock burst in roadway excavation in steeply inclined extra-thick coal seam

    Get PDF
    With the gradual coal mining of deep rock burst mine, the impact accompanying roadway excavation becomes more and more intense. Aiming at the problem of effective prevention and control of rock burst in roadway excavation, taking the steep seam mine in the Wudong Coal Mine as an example, the temporal and spatial precursor characteristics of rock burst in roadway excavation were analyzed by microseismic monitoring. Combined with the numerical simulation analysis of stress and energy changes in roadway excavation, the mechanism of rock burst in roadway excavation was revealed, and the prevention and control strategy of rock burst in steeply inclined extra-thick coal seam roadway was put forward, which was verified by field engineering practice. The results show that the total energy of microseisms is extremely low for 2−5 days or there is an energy latency of at least 4 days before the rock burst occurs due to roadway excavation in steeply inclined extra-thick coal seam. Within 5 days before rock burst occurs, there is a high-frequency fluctuation period of maximum energy ratio for more than 3 days. There is an obvious lack of earthquake before the rock burst occurs, and the occurrence position is concentrated in the range of minimum value of microseismic energy near the heading face, or in the range of minimum value of microseismic frequency near the extreme value of microseismic energy, and the rock burst event is located in the area with high impact deformation energy index. The hard overburden structure of horizontal sublevel fully mechanized caving mining in steeply inclined extra-thick coal seam is not easy to break, which makes the stress concentration on both sides of upper horizontal goaf exist in roadway excavation. The stress between the front of the heading face and the bottom of the roadway squeezed by the roof and floor strata is concentrated and the energy accumulation is remarkable. With the increase of the heading depth of the roadway, the stress concentration and energy accumulation are further enhanced, which is easy to induce dynamic disasters such as rock burst. The prevention and control strategies of rock burst was established through comprehensive analysis, which consist of face blasting pressure relief, roadway drilling pressure relief and reinforcement support, and scaffolding in complex areas. Combined with the temporal and spatial precursory anomalies of rock burst, it provides an opportunity to strengthen the unloading pressure in time. Through the pressure relief of working face and roadway, the accumulated microseismic energy of more than 1×105 J per day did not occur during the excavation. After the support was optimized and the complex area was protected, the daily average microseismic energy of roadway excavation decreased to 2.2 kJ, and the proportion of microseismic events above 1 kJ decreased, and the overall section of roadway was flat
    • …
    corecore