463 research outputs found

    Robotic Planning under Hierarchical Temporal Logic Specifications

    Full text link
    Past research into robotic planning with temporal logic specifications, notably Linear Temporal Logic (LTL), was largely based on singular formulas for individual or groups of robots. But with increasing task complexity, LTL formulas unavoidably grow lengthy, complicating interpretation and specification generation, and straining the computational capacities of the planners. In order to maximize the potential of LTL specifications, we capitalized on the intrinsic structure of tasks and introduced a hierarchical structure to LTL specifications. In contrast to the "flat" structure, our hierarchical model has multiple levels of compositional specifications and offers benefits such as greater syntactic brevity, improved interpretability, and more efficient planning. To address tasks under this hierarchical temporal logic structure, we formulated a decomposition-based method. Each specification is first broken down into a range of temporally interrelated sub-tasks. We further mine the temporal relations among the sub-tasks of different specifications within the hierarchy. Subsequently, a Mixed Integer Linear Program is utilized to generate a spatio-temporal plan for each robot. Our hierarchical LTL specifications were experimentally applied to domains of robotic navigation and manipulation. Results from extensive simulation studies illustrated both the enhanced expressive potential of the hierarchical form and the efficacy of the proposed method.Comment: 8 pages, 4 figure

    Hierarchical Ni-Mn LDHs@CuC\u3csub\u3e2\u3c/sub\u3eO\u3csub\u3e4\u3c/sub\u3e Nanosheet Arrays-Modified Copper Mesh: A Dual-Functional Material for Enhancing Oil/Water Separation and Supercapacitors

    Get PDF
    The pursuit of superhydrophilic materials with hierarchical structures has garnered significant attention across diverse application domains. In this study, we have successfully crafted Ni-Mn LDHs@CuC2O4 nanosheet arrays on a copper mesh (CM) through a synergistic process involving chemical oxidation and hydrothermal deposition. Initially, CuC2O4 nanosheets were synthesized on the copper mesh, closely followed by the growth of Ni-Mn LDHs nanosheets, culminating in the establishment of a multi-tiered surface architecture with exceptional superhydrophilicity and remarkable underwater superoleophobicity. The resultant Ni-Mn LDHs@CuC2O4 CM membrane showcased an unparalleled amalgamation of traits, including superhydrophilicity, underwater superoleophobicity, and the ability to harness photocatalytic forces for self-cleaning actions, making it an advanced oil-water separation membrane. The membrane’s performance was impressive, manifesting in a remarkable water flux range (70 kL•m-2•h-1) and an efficient oil separation capability for both oil/water mixture and surfactant-stabilized emulsions (below 60 ppm). Moreover, the innate superhydrophilic characteristics of the membrane rendered it a prime candidate for deployment as a supercapacitor cathode material. Evidenced by a capacitance of 5080 mF•cm-2 at a current density of 6 mA cm-2 in a 6MKOH electrolyte, the membrane’s potential extended beyond oil-water separation. This work not only introduces a cutting-edge oil-water separation membrane and supercapacitor electrode but also offers a promising blueprint for the deliberate engineering of hierarchical structure arrays to cater to a spectrum of related applications

    CO2 capture over steam and KOH activated biochar: Effect of relative humidity

    Get PDF
    Carbon dioxide (CO2) capture is critical for emission reduction. Biochar is a promising adsorbent for CO2 capture. In this work, the effect of relative humidity and biochar activation with steam or KOH treatment on CO2 capture was investigated. The results demonstrate that the biochar sample activated by KOH has a high CO2 capture capacity (50.73 mg g−1). In addition, the biochar after 1.0 h of steam treatment showed a carbon capture capacity of 38.84 mg g−1. The results also show that the capture ability of biochar decreased as CO2 concentration decreased from 100% to 15%. The relative humidity had a negative impact on CO2 capture over biochar. The CO2 capture capability of biochar materials treated by steam decreased by a range of 31.38%–62.89% as the relative humidity rose from 8.8% to 87.9%. Furthermore, the lifetime of biochar samples at various relative humidity shows that increased relative humidity had a negative impact on CO2 adsorption due to water molecules occupying active sites

    Visualising Co nanoparticle aggregation and encapsulation in Co/TiO2 catalysts and its mitigation through surfactant residues

    Get PDF
    Due to the reducible nature of TiO2, the encapsulation of cobalt nanoparticles (CoNPs) by reduced TiO2-x is often reported to decrease their catalytic performance in reactions such as Fisher-Tropsch synthesis (FTS). Here, we show using HAADF-STEM imaging and electron energy loss spectroscopy (EELS) that a residual C12E4 surfactant used to prepare the CoNPs, remains on the surface of a TiO2 rutile support, preventing the formation of Ti3+/Ti2+ oxides and therefore TiO2-x migration. Furthermore, the presence of these surfactant residues prevents the coalescence and aggregation of CoNPs during catalyst preparation, maintaining the dispersion of CoNPs. As such, using C12E4 in the preparation of Co/TiO2 can be considered beneficial for producing a catalyst with a greater number of active Co species

    M2 Polarization of Macrophages Facilitates Arsenic-Induced Cell Transformation of Lung Epithelial Cells

    Get PDF
    The alterations in microenvironment upon chronic arsenic exposure may contribute to arsenic-induced lung carcinogenesis. Immune cells, such as macrophages, play an important role in mediating the microenvironment in the lungs. Macrophages carry out their functions after activation. There are two activation status for macrophages: classical (M1) or alternative (M2); the latter is associated with tumorigenesis. Our previous work showed that long-term arsenic exposure induces transformation of lung epithelial cells. However, the crosstalk between epithelial cells and macrophages upon arsenic exposure has not been investigated. In this study, using a co-culture system in which human lung epithelial cells are cultured with macrophages, we determined that long-term arsenic exposure polarizes macrophages towards M2 status through ROS generation. Co-culture with epithelial cells further enhanced the polarization of macrophages as well as transformation of epithelial cells, while blocking macrophage M2 polarization decreased the transformation. In addition, macrophage M2 polarization decreased autophagy activity, which may account for increased cell transformation of epithelial cells with co-culture of macrophages

    Potassium-promoted limestone for preferential direct hydrogenation of carbonates in integrated CO 2 capture and utilization

    Get PDF
    Integrated CO2 capture and utilization (ICCU) via the reverse water–gas shift (RWGS) reaction offers a particularly promising route for converting diluted CO2 into CO using renewable H2. Current ICCU-RWGS processes typically involve a gas–gas catalytic reaction whose efficiency is inherently limited by the Le Chatelier principle and side reactions. Here, we show a highly efficient ICCU process based on gas–solid carbonate hydrogenation using K promoted CaO (K-CaO) as a dual functional sorbent and catalyst. Importantly, this material allows ∼100% CO2 capture efficiency during carbonation and bypasses the thermodynamic limitations of conventional gas-phase catalytic processes in hydrogenation of ICCU, achieving >95% CO2-to-CO conversion with ∼100% selectivity. We showed that the excellent functionalities of the K-CaO materials arose from the formation of K2Ca­(CO3)2 bicarbonates with septal K2CO3 and CaCO3 layers, which preferentially undergo a direct gas–solid phase carbonates hydrogenation leading to the formation of CO, K2CO3 CaO and H2O. This work highlights the immediate potential of K-CaO as a class of dual-functional material for highly efficient ICCU and provides a new rationale for designing functional materials that could benefit the real-life application of ICCU processes

    Thin film nanocomposite membranes of PIM-1 and graphene oxide/ZIF-8 nanohybrids for organophilic pervaporation

    Get PDF
    In this work, thin film nanocomposite (TFN) membranes of super-glassy polymer PIM-1 containing zeolitic imidazolate framework-8 (ZIF-8)/graphene oxide (GO) composites (ZG) have been prepared by dip-coating onto water pre-impregnated polyvinylidene fluoride (PVDF) substrates. Higher flux and improved separation factors as compared to bare PIM-1 thin film composite (TFC) membranes have been achieved in organophilic pervaporation; for an aqueous feed solution with 5 wt% of butanol at 65 °C, a total permeate flux of 7.9 ± 0.69 kg m−2h−1 and a separation factor (βBtOH/H2O) of 29.9 ± 1.99 have been obtained with a TFC membrane containing 0.5 wt% of ZG filler. The pervaporation separation index (PSI) of this membrane (228 kg m−2h−1) is amongst the highest values reported in the literature. This excellent performance is attributed to the formation of a defect-free PIM-1 active layer (<1 μm) and the hydrophobic nature of the ZG fillers.Patricia Gorgojo is grateful to the Spanish Ministerio de Economía y Competitividad and the European Social Fund for her Ramon y Cajal Fellowship (RYC2019-027060-I/AEI/10.13039/501100011033). Boya Qiu would like to acknowledge the China Scholarship Council (CSC, file no. 202006240076)and the University of Manchester for the joint PhD studentship to support her research.Peer reviewe

    Transplantation of Pro-Oligodendroblasts, Preconditioned by LPS-Stimulated Microglia, Promotes Recovery After Acute Contusive Spinal Cord Injury

    Get PDF
    Spinal cord injury (SCI) is a significant clinical challenge, and to date no effective treatment is available. Oligodendrocyte progenitor cell (OPC) transplantation has been a promising strategy for SCI repair. However, the poor posttransplantation survival and deficiency in differentiation into myelinating oligodendrocytes (OLs) are two major challenges that limit the use of OPCs as donor cells. Here we report the generation of an OL lineage population [i.e., pro-oligodendroblasts (proOLs)] that is relatively more mature than OPCs for transplantation after SCI. We found that proOLs responded to lipopolysaccharide (LPS)-stimulated microglia conditioned medium (L+M) by preserving toll-like receptor 4 (TLR4) expression, improving cell viability, and enhancing the expression of a myelinating OL marker myelin basic protein (MBP), compared to other OL lineage cells exposed to either LPS-stimulated (L+M) or nonstimulated microglia conditioned medium (L−M). When L+M-stimulated proOLs were intrathecally delivered through a lumbar puncture after a T10 thoracic contusive SCI, they promoted behavioral recovery, as assessed by the Basso‐Beattie‐Bresnahan (BBB) locomotor rating scale, stride length, and slips on the grid tests. Histologically, transplantation of L+M proOLs caused a considerable increase in intralesional axon numbers and myelination, and less accumulation of invading macrophages when compared with the vehicle control or OPC transplantation. Thus, transplantation of proOLs, preconditioned by L+M, may offer a better therapeutic potential for SCI than OPCs since the former may have initiated the differentiation process toward OLs prior to transplantation

    Recent progress in metal–organic framework/graphene-derived materials for energy storage and conversion: design, preparation, and application

    Get PDF
    Graphene or chemically modified graphene, because of its high specific surface area and abundant functional groups, provides an ideal template for the controllable growth of metal–organic framework (MOF) particles. The nanocomposite assembled from graphene and MOFs can effectively overcome the limitations of low stability and poor conductivity of MOFs, greatly widening their application in the field of electrochemistry. Furthermore, it can also be utilized as a versatile precursor due to the tunable structure and composition for various derivatives with sophisticated structures, showing their unique advantages and great potential in many applications, especially energy storage and conversion. Therefore, the related studies have been becoming a hot research topic and have achieved great progress. This review summarizes comprehensively the latest methods of synthesizing MOFs/graphene and their derivatives, and their application in energy storage and conversion with a detailed analysis of the structure–property relationship. Additionally, the current challenges and opportunities in this field will be discussed with an outlook also provide
    corecore