1,919 research outputs found

    Germanene: a novel two-dimensional Germanium allotrope akin to Graphene and Silicene

    Get PDF
    Using a gold (111) surface as a substrate we have grown in situ by molecular beam epitaxy an atom-thin, ordered, two-dimensional multi-phase film. Its growth bears strong similarity with the formation of silicene layers on silver (111) templates. One of the phases, forming large domains, as observed in Scanning Tunneling Microscopy, shows a clear, nearly flat, honeycomb structure. Thanks to thorough synchrotron radiation core-level spectroscopy measurements and advanced Density Functional Theory calculations we can identify it to a 3\sqrt{3}x3\sqrt{3}R(30{\deg}) germanene layer in coincidence with a 7\sqrt{7}x7\sqrt{7}R(19.1{\deg}) Au(111) supercell, thence, presenting the first compelling evidence of the birth of a novel synthetic germanium-based cousin of graphene.Comment: 16 pages, 4 figures, 1 tabl

    Properties and Wood Bonding Capacity of Nanoclay-Modified Urea and Melamine Formaldehyde Resins

    Get PDF
    Urea formaldehyde (UF) and melamine formaldehyde (MF) thermosetting resins were substituted with up to 6% nanoclay (organic modified Cloisite®30B and unmodified Nanofil® 116; Southern Clay Ltd, Austin, TX) and assessed for mixing and curing compatibility using X-ray diffraction, differential scanning calorimetry, wood lap-shear tests, and particleboard strength tests. Cloisite® 30B exfoliated fully in both resin types, whereas Nanofil® 116 showed increased spacing between platelets (intercalation) but not exfoliation. Nanoclays improved bonding strength of MF more than UF resin, and 2% nanoclay with a coupling agent in MF significantly enhanced particleboard bonding strength. Also, thickness swelling of particleboard in water decreased with up to 6% nanoclay. To decrease costs, MF resin could potentially be substituted by up to 6% nanoclay with no detrimental effect on properties

    Star Formation and the Growth of Stellar Mass

    Full text link
    Recent observations have demonstrated a significant growth in the integrated stellar mass of the red sequence since z=1, dominated by a steadily increasing number of galaxies with stellar masses M* < 10^11 M_sun. In this paper, we use the COMBO-17 photometric redshift survey in conjunction with deep Spitzer 24 micron data to explore the relationship between star formation and the growth of stellar mass. We calculate `star formation rate functions' in four different redshift slices, splitting also into contributions from the red sequence and blue cloud for the first time. We find that the growth of stellar mass since z=1 is consistent with the integrated star formation rate. Yet, most of the stars formed are in blue cloud galaxies. If the stellar mass already in, and formed in, z<1 blue cloud galaxies were to stay in the blue cloud the total stellar mass in blue galaxies would be dramatically overproduced. We explore the expected evolution of stellar mass functions, finding that in this picture the number of massive M* > 3x10^10 M_sun blue galaxies would also be overproduced; i.e., most of the new stars formed in blue cloud galaxies are in the massive galaxies. We explore a simple truncation scenario in which these `extra' blue galaxies have their star formation suppressed by an unspecified mechanism or mechanisms; simple cessation of star formation in these extra blue galaxies is approximately sufficient to build up the red sequence at M*<10^11 M_sun.Comment: 9 Pages; ApJ in pres

    Classification of N=2 supersymmetric CFT_{4}s: Indefinite Series

    Full text link
    Using geometric engineering method of 4D N=2\mathcal{N}=2 quiver gauge theories and results on the classification of Kac-Moody (KM) algebras, we show on explicit examples that there exist three sectors of N=2\mathcal{N}=2 infrared CFT4_{4}s. Since the geometric engineering of these CFT4_{4}s involve type II strings on K3 fibered CY3 singularities, we conjecture the existence of three kinds of singular complex surfaces containing, in addition to the two standard classes, a third indefinite set. To illustrate this hypothesis, we give explicit examples of K3 surfaces with H34_{3}^{4} and E10_{10} hyperbolic singularities. We also derive a hierarchy of indefinite complex algebraic geometries based on affine ArA_{r} and T%_{(p,q,r)} algebras going beyond the hyperbolic subset. Such hierarchical surfaces have a remarkable signature that is manifested by the presence of poles.Comment: 12 pages, 2 figure

    Two-axis control of a singlet-triplet qubit with an integrated micromagnet

    Full text link
    The qubit is the fundamental building block of a quantum computer. We fabricate a qubit in a silicon double quantum dot with an integrated micromagnet in which the qubit basis states are the singlet state and the spin-zero triplet state of two electrons. Because of the micro magnet, the magnetic field difference ΔB\Delta B between the two sides of the double dot is large enough to enable the achievement of coherent rotation of the qubit's Bloch vector about two different axes of the Bloch sphere. By measuring the decay of the quantum oscillations, the inhomogeneous spin coherence time T2∗T_{2}^{*} is determined. By measuring T2∗T_{2}^{*} at many different values of the exchange coupling JJ and at two different values of ΔB\Delta B, we provide evidence that the micromagnet does not limit decoherence, with the dominant limits on T2∗T_{2}^{*} arising from charge noise and from coupling to nuclear spins.Comment: 10 pages, 9 figure

    Shear viscosity, instability and the upper bound of the Gauss-Bonnet coupling constant

    Full text link
    We compute the dimensionality dependence of η/s\eta/s for charged black branes with Gauss-Bonnet correction. We find that both causality and stability constrain the value of Gauss-Bonnet coupling constant to be bounded by 1/4 in the infinite dimensionality limit. We further show that higher dimensionality stabilize the gravitational perturbation. The stabilization of the perturbation in higher dimensional space-time is a straightforward consequence of the Gauss-Bonnet coupling constant bound.Comment: 16 pages,3 figures+3 tables,typos corrected, published versio

    Coulomb-enhanced dynamic localization and Bell state generation in coupled quantum dots

    Full text link
    We investigate the dynamics of two interacting electrons in coupled quantum dots driven by an AC field. We find that the two electrons can be trapped in one of the dots by the AC field, in spite of the strong Coulomb repulsion. In particular, we find that the interaction may enhance the localization effect. We also demonstrate the field excitation procedure to generate the maximally entangled Bell states. The generation time is determined by both analytic and numerical solutions of the time dependent Schrodinger equation.Comment: 12 pages, 5 figure

    Time Periodic Behavior of Multiband Superlattices in Static Electric Fields

    Full text link
    We use an analytic perturbation expansion for the two-band system of tight binding electrons to discuss Bloch oscillations and Zener tunneling within this model. We make comparison with recent numerical results and predict analytically the frequency of radiation expected from Zener tunneling, including its disappearance, as a function of the system parameters.Comment: 12 pages, no figure include
    • …
    corecore