146 research outputs found

    Agent Based Models of Language Competition: Macroscopic descriptions and Order-Disorder transitions

    Get PDF
    We investigate the dynamics of two agent based models of language competition. In the first model, each individual can be in one of two possible states, either using language XX or language YY, while the second model incorporates a third state XY, representing individuals that use both languages (bilinguals). We analyze the models on complex networks and two-dimensional square lattices by analytical and numerical methods, and show that they exhibit a transition from one-language dominance to language coexistence. We find that the coexistence of languages is more difficult to maintain in the Bilinguals model, where the presence of bilinguals in use facilitates the ultimate dominance of one of the two languages. A stability analysis reveals that the coexistence is more unlikely to happen in poorly-connected than in fully connected networks, and that the dominance of only one language is enhanced as the connectivity decreases. This dominance effect is even stronger in a two-dimensional space, where domain coarsening tends to drive the system towards language consensus.Comment: 30 pages, 11 figure

    Dynamics of link states in complex networks: The case of a majority rule

    Get PDF
    Motivated by the idea that some characteristics are specific to the relations between individuals and not of the individuals themselves, we study a prototype model for the dynamics of the states of the links in a fixed network of interacting units. Each link in the network can be in one of two equivalent states. A majority link-dynamics rule is implemented, so that in each dynamical step the state of a randomly chosen link is updated to the state of the majority of neighboring links. Nodes can be characterized by a link heterogeneity index, giving a measure of the likelihood of a node to have a link in one of the two states. We consider this link-dynamics model on fully connected networks, square lattices and Erd \"os-Renyi random networks. In each case we find and characterize a number of nontrivial asymptotic configurations, as well as some of the mechanisms leading to them and the time evolution of the link heterogeneity index distribution. For a fully connected network and random networks there is a broad distribution of possible asymptotic configurations. Most asymptotic configurations that result from link-dynamics have no counterpart under traditional node dynamics in the same topologies.Comment: 9 pages, 13 figure

    Anomalous lifetime distributions and topological traps in ordering dynamics

    Get PDF
    We address the role of community structure of an interaction network in ordering dynamics, as well as associated forms of metastability. We consider the voter and AB model dynamics in a network model which mimics social interactions. The AB model includes an intermediate state between the two excluding options of the voter model. For the voter model we find dynamical metastable disordered states with a characteristic mean lifetime. However, for the AB dynamics we find a power law distribution of the lifetime of metastable states, so that the mean lifetime is not representative of the dynamics. These trapped metastable states, which can order at all time scales, originate in the mesoscopic network structure.Comment: 7 pages; 6 figure

    Analytical Solution of the Voter Model on Disordered Networks

    Get PDF
    We present a mathematical description of the voter model dynamics on heterogeneous networks. When the average degree of the graph is μ2\mu \leq 2 the system reaches complete order exponentially fast. For μ>2\mu >2, a finite system falls, before it fully orders, in a quasistationary state in which the average density of active links (links between opposite-state nodes) in surviving runs is constant and equal to (μ2)3(μ1)\frac{(\mu-2)}{3(\mu-1)}, while an infinite large system stays ad infinitum in a partially ordered stationary active state. The mean life time of the quasistationary state is proportional to the mean time to reach the fully ordered state TT, which scales as T(μ1)μ2N(μ2)μ2T \sim \frac{(\mu-1) \mu^2 N}{(\mu-2) \mu_2}, where NN is the number of nodes of the network, and μ2\mu_2 is the second moment of the degree distribution. We find good agreement between these analytical results and numerical simulations on random networks with various degree distributions.Comment: 20 pages, 8 figure

    Broad lifetime distributions for ordering dynamics in complex networks

    Get PDF
    We search for conditions under which a characteristic time scale for ordering dynamics towards either of two absorbing states in a finite complex network of interactions does not exist. With this aim, we study random networks and networks with mesoscale community structure built up from randomly connected cliques. We find that large heterogeneity at the mesoscale level of the network appears to be a sufficient mechanism for the absence of a characteristic time for the dynamics. Such heterogeneity results in dynamical metastable states that survive at any time scale.Comment: 8 pages, 12 figure

    Consensus and ordering in language dynamics

    Get PDF
    We consider two social consensus models, the AB-model and the Naming Game restricted to two conventions, which describe a population of interacting agents that can be in either of two equivalent states (A or B) or in a third mixed (AB) state. Proposed in the context of language competition and emergence, the AB state was associated with bilingualism and synonymy respectively. We show that the two models are equivalent in the mean field approximation, though the differences at the microscopic level have non-trivial consequences. To point them out, we investigate an extension of these dynamics in which confidence/trust is considered, focusing on the case of an underlying fully connected graph, and we show that the consensus-polarization phase transition taking place in the Naming Game is not observed in the AB model. We then consider the interface motion in regular lattices. Qualitatively, both models show the same behavior: a diffusive interface motion in a one-dimensional lattice, and a curvature driven dynamics with diffusing stripe-like metastable states in a two-dimensional one. However, in comparison to the Naming Game, the AB-model dynamics is shown to slow down the diffusion of such configurations.Comment: 7 pages, 6 figure

    Algebraic coarsening in voter models with intermediate states

    Full text link
    The introduction of intermediate states in the dynamics of the voter model modifies the ordering process and restores an effective surface tension. The logarithmic coarsening of the conventional voter model in two dimensions is eliminated in favour of an algebraic decay of the density of interfaces with time, compatible with Model A dynamics at low temperatures. This phenomenon is addressed by deriving Langevin equations for the dynamics of appropriately defined continuous fields. These equations are analyzed using field theoretical arguments and by means of a recently proposed numerical technique for the integration of stochastic equations with multiplicative noise. We find good agreement with lattice simulations of the microscopic model.Comment: 11 pages, 5 figures; minor typos correcte

    Timing interactions in social simulations: The voter model

    Full text link
    The recent availability of huge high resolution datasets on human activities has revealed the heavy-tailed nature of the interevent time distributions. In social simulations of interacting agents the standard approach has been to use Poisson processes to update the state of the agents, which gives rise to very homogeneous activity patterns with a well defined characteristic interevent time. As a paradigmatic opinion model we investigate the voter model and review the standard update rules and propose two new update rules which are able to account for heterogeneous activity patterns. For the new update rules each node gets updated with a probability that depends on the time since the last event of the node, where an event can be an update attempt (exogenous update) or a change of state (endogenous update). We find that both update rules can give rise to power law interevent time distributions, although the endogenous one more robustly. Apart from that for the exogenous update rule and the standard update rules the voter model does not reach consensus in the infinite size limit, while for the endogenous update there exist a coarsening process that drives the system toward consensus configurations.Comment: Book Chapter, 23 pages, 9 figures, 5 table
    corecore