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Abstract – We address the role of community structure of an interaction network in ordering
dynamics, as well as associated forms of metastability. We consider the voter and AB model
dynamics in a network model which mimics social interactions. The AB model includes an
intermediate state between the two excluding options of the voter model. For the voter model
we find dynamical metastable disordered states with a characteristic mean lifetime. However, for
the AB dynamics we find a power law distribution of the lifetime of metastable states, so that the
mean lifetime is not representative of the dynamics. These trapped metastable states, which can
order at all time scales, originate in the mesoscopic network structure.

Copyright c© EPLA, 2007

Introduction. – Statistical mechanics and complex
network theory have been applied to different disciplines,
ranging from biology to sociology. From this perspective,
social systems are modelled as a collection of agents, loca-
ted at the nodes of a network, interacting through simple
rules. Social networks of human interaction are structured
into cohesive groups [1], and increased knowledge of this
structure [2–4] has sparked the creation of new network
models [3,5–9]. These models allow us to study the effect of
the structure of social interactions on the dynamics taking
place on the networks, and on the associated collective
phenomena emerging from the interactions among the
agents.
The mesoscopic structure of a social network, and

in particular its community structure, has been found
to influence dynamics taking place on it in ways that
cannot be explained by global level statistics in several
cases [4,10–12]. In this paper we address the role of such
mesoscopic structure on ordering dynamics or consensus
processes: the question is when the interaction of agents
with several options leads to an ordered state with a single
option (consensus) or when disordered states (possibly
metastable) with coexisting options prevail. We consider
two dynamical models. The first one is the prototype voter
model [13] whose dynamics in complex networks is known

(a)These authors contributed equally to this work.

to be generally determined by global properties such
as the effective network dimensionality [14]. Secondly,
we consider the AB model [15] introduced to describe
language competition, which gives a natural context for
the community concept. These two dynamical models are
studied in a class of networks [9] incorporating nontriv-
ial community structure which introduces structural
correlations.

Two dynamical models of competing

options. – The voter model [13] concerns the competi-
tion of two equivalent but excluding options A and B.
The state of a node is updated by imitation of a randomly
chosen neighbor. The AB model [15] includes a third
non-excluding mixed AB state, with the additional rule
that a node cannot change state from A to B or vice
versa without going through the AB state. In studies of
dynamics of language competition, the voter model gives
a microscopic version [16] of the Abrams-Strogatz [17]
model for the competition of two socially equivalent
languages. In this context the third state of non-excluding
options of the AB model is naturally associated with
bilingualism [18]. More generally the AB model describes
competition of two equivalent social norms which can
coexist at the individual level.
In both models, an agent changes its state with a prob-

ability which depends on the states of its neighbors. The
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fraction of first neighbors in state A [B, AB] of an agent
is called the local density σA [σB , σAB ]. For the voter
model, the state AB is not allowed and the probabilities
of a node changing state are defined as follows:

pA→B = σB, pB→A = σA. (1)

The AB model is defined by the following update rules:

pA→AB =
1

2
σB , pB→AB =

1

2
σA (2)

pAB→A =
1

2
(1−σB), pAB→B =

1

2
(1−σA). (3)

In our simulations we start from random initial condi-
tions for the state of the agents in a network with N nodes
(see below) and we use random asynchronous node update:
at each time step a single node is randomly chosen and
updated according to the transition probabilities eq. (1)
or eqs. (2), (3). We normalize time so that every unit of
time includes N time steps.
A question of interest is under which conditions consen-

sus is reached (all nodes hold the same option), and which
is the process of emergence and growth of spatial domains
where the nodes are in the same state (coarsening). Both
models are symmetric by interchange of A and B, so
that reaching consensus in either of these two states is
a symmetry-breaking process. To describe the dynamics
of the system we use as order parameter the interface
density ρ, which is defined as the fraction of links which
connect nodes in different states. The ensemble average
interface density 〈ρ〉 is considered, where the ensemble
average, indicated as 〈·〉, denotes average over realizations
of the stochastic dynamics starting from different random
initial conditions. Interface density decreases as domains
grow in size. If one of the states becomes dominant, the
interface density decreases along with the disappearing
state. Zero interface density indicates that an absorbing
state, consensus, has been reached. Coarsening in the
voter model is driven by interfacial noise, while for
the AB model earlier results indicate that coarsening
is curvature driven: boundaries tend to straighten out,
reducing curvature and leading to the growth of spatial
domains [15]. It turns out that domains of AB agents are
never formed. Instead, AB agents place themselves in the
interface between A and B domains.
The dependence of the voter model dynamics on

network dimensionality, disorder and degree distribution
has been carefully studied [14,19–21]. A main result is that
d= 2 is the critical dimensionality for this model. This
means that for d� 2 there is coarsening, i.e. unbounded
growth (in the thermodynamic limit) of domains in
which all nodes are in the same state. However, for d > 2
there is no coarsening beyond an initial transient. In
finite networks of d > 2 there exist long-lived metastable
states in which ρ takes a plateau value. The inverse of
this plateau value is the characteristic size of coexisting
A and B domains. Eventually a finite-size fluctuation
takes the system to one of the two consensus-absorbing

states. We note that complex networks are typically
high-dimensional structures for which these metastable
states naturally occur [14].
Coarsening processes leading to consensus often come

to a halt due to the appearance of metastable states that
can be of different nature. Coarsening and metastable
properties depend on the dynamical model as well as
on network characteristics. The type of metastability
encountered for the voter model is characterized by the
fact that all realizations of the process are of the same class
(qualitatively similar) and that the metastable states have
a finite lifetime for a finite system. For the voter model the
mean lifetime of these states scales as τ ∼N [14]. We call
this type of metastable states dynamical metastable states.
A different type of metastability, which we call trapped
metastable states, occurs in situations in which different
realizations of the process are of different type. While some
of them follow a coarsening process until finite-size effects
come into play, others get stuck in topological traps. The
latter correspond to trapped metastable states that can
be of two types: they might have a finite lifetime in finite
systems, as it occurs for the AB model with stripe-like
configurations in regular two-dimensional lattices [15], or
they might be infinitely long lived as it occurs in zero-
temperature kinetic Ising models [22–25]. In summary,
different forms of metastability can appear for the voter
and AB models considered here, but every realization is
expected to have a finite lifetime in a finite system.

A class of social type networks. – Several models
have been designed to capture some of the character-
istics of social networks, based on mechanisms such as
geographical proximity [8], social similarity [3,7], and
local search [5,6,9]. A combination of random attachment
with local search for new contacts has proved fruitful in
generating well-known features of social networks, such as
assortativity, broad degree distributions, and community
structure [9]. The term “community” is typically used in
the context of groups of nodes with dense internal
and sparse external connections; exact definitions differ
[26–29]. The community structure leads naturally to high
values of the clustering coefficient.
The algorithm to generate this class of networks [9]

consists of two growth processes: 1) random attachment,
and 2) implicit preferential attachment resulting from
following edges from the randomly chosen initial contacts.
The local nature of the second process gives rise to
high clustering, assortativity and community structure.
Starting from any small connected seed network of N0
vertices, new nodes are added as follows (see fig. 1): i) Pick
ninit � 1 random nodes as initial contacts. ii) Pick nsec � 0
neighbors of each initial contact as secondary contacts.
iii) Connect the new node to the initial and secondary
contacts.
Throughout this paper, we will use the standard parame-

ters [9]: the number of initial contacts is selected according
to the probabilities p(ninit = 1) = 0.95, p(ninit = 2) = 0.05;
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Fig. 1: Growth process of the network. The new vertex v links
to one or more randomly chosen initial contacts (here i, j) and
possibly to some of their neighbors (here k, l).

10
0

10
1

10
2

10

10
1

10
0

10
1

10
2

10
3

s

 <
 n

(s
) 

>

Fig. 2: Left: a partial view of the network centered on a
randomized selected node. Right: average number 〈n(s)〉 of k-
clique-communities of size s for k= 4 (�) and k= 5 (©), in
networks of size N = 10000, averaged over 400 realizations.

and the number of secondary contacts from each initial
contact, nsec, is chosen from a uniform probability distri-
bution between 0 and 3; the initial seed contains N0 = 10
nodes.
The degree distributions of the resulting networks are

found to decay slower than exponential [9]. Using the
k-clique algorithm [29] for detecting communities, a broad
distribution of community sizes is found in the model
(fig. 2).
For reference, we use randomized versions of the same

networks, where the degree sequence is kept intact but
edges are randomly rewired under the restriction that
the network must stay connected [30]. This eliminates
community structure, clustering, and degree correlations.
The randomized networks are therefore locally treelike.

Results. – We have considered the update rules
eqs. (1) for the voter model, or eqs. (2), (3) for the
AB model in the class of networks described above.
We followed the development over time of the interface
density and of the fraction of runs that had not yet
reached consensus at any particular time. When results
for the original and randomized networks differ, we can
conclude that structural characteristics other than the
degree distribution are responsible for the differences.

Interface density. The average interface density 〈ρ〉
on the class of networks considered here, and on their
randomized counterparts is shown in fig. 3. For the voter
model (fig. 3a), we obtain that the structure of the network
does not alter the qualitative behavior. In both classes
of networks we observe plateau values of 〈ρ〉 associated
with dynamical metastable states. Still, the plateau value
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Fig. 3: Time evolution of the average interface density in
networks with communities (solid symbols) and randomized
networks (empty symbols) with the same degree sequences.
(a) Voter model. Network sizes increase from left to right:
N = 100, 400, 2500, 10000. Averages are taken over 100
different realizations of the model network, with 10 runs in
each. Inset: time to reach consensus scales with network size
as τ ∼Nγ , γ ≈ 0.96 for the randomized and γ ≈ 0.98 for the
original networks. (b) AB model. Network sizes increase from
left to right: N = 100, 400, 2500, 10000, 40000. Averages taken
over 400–5000 realizations (depending on system size) of the
model network, and with 10 runs in each.

for networks with community structure is lower than for
the randomized networks, indicating that the typical size
of spatial domains where agents are in the same state is
larger. We also observe in both cases that finite size
fluctuations drive the system to an absorbing state. The
characteristic time to reach consensus (mean lifetime of
the metastable state) depends on network size but it does
not depend sensitively on network structure. The inset in
fig. 3a shows that the time to reach consensus depends
linearly on network size for networks with communities
and their randomized counterparts1. These results support
the earlier finding made on networks without mesoscopic
structure that effective dimensionality dominates voter
model behavior [14].

1The slight deviation from linear scaling is due to violation of
conservation laws when using node update dynamics on networks
with nodes of very different degree (see [21]).
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Fig. 4: Fraction of alive runs in time for networks with
communities (solid symbols) and randomized networks (empty
symbols). AB model (double-logarithmic plot); system sizes
N = 100, 400, 2500, 10000 from left to right, with averages
taken over different realizations of the network (400–5000
depending on system size), with 10 runs in each. Inset: voter
model (semilogarithmic plot). System sizes N = 2500, 10000.
Averages are taken over 100 different realizations of the
networks, with 10 runs in each.

Figure 3b shows the average interface density for the AB
dynamics. We observe significant differences between the
original and the randomized version networks: a plateau
value of 〈ρ〉 is observed for randomized networks, while a
first dynamical stage of coarsening where spatial domains
grow in size is found for large networks with communi-
ties. The plateau observed in randomized networks indi-
cates that a dynamical metastable state of the class found
in the voter model for both types of networks is rapidly
reached. Moreover, in the randomized networks there is a
fast decay towards an absorbing state with a characteristic
time to reach consensus almost independent of system size.
For the networks with a community structure we observe
two dynamical stages in the evolution of 〈ρ〉. After an
initial power law associated with coarsening there appears
a second power law tail in the approach to the absorb-
ing state. This last power law decay indicates that the
mean lifetime to reach consensus for the AB model does
not characterize the dynamics on these networks and that
metastable states exist at all time scales, as we discuss
below. Additionally, the difference with the randomized
networks in several orders of magnitude for the extinc-
tion times, which increases with system size, shows that
the network with communities slows down the dynamics
significantly. All together these results manifest a sensitiv-
ity of the AB dynamics to the mesoscopic network struc-
ture which is not found for the voter dynamics.

Fraction of alive runs. Figure 4 shows the fraction
P (t) of realizations still alive at time t, i.e. the fraction
of realizations which have not reached the absorbing
state. For the voter model, the fraction of alive runs

decreases exponentially in both the original and random-
ized networks (fig. 4, inset), in agreement with previous
results for the voter model in high-dimensional complex
networks [14]. A rather different result is found for the
AB model (fig. 4). In our class of networks, we find a
power law behavior P (t)∼ t−α, α≈ 1.3, so that a mean
lifetime of the realizations of the AB dynamics does not
give a characteristic time scale. At any time there are
live realizations which have not reached the absorbing
state. Different parametrizations of the network model
(not shown) produce the same qualitative phenomenon:
we have modified the number of secondary contacts from
each initial contact, nsec, using uniform probability distri-
butions between 0 and 1, 2, 4, obtaining also a power law
of the distribution of alive runs with an exponent smaller
than 2, which indicates the robustness of this result. This
behavior is different from the usual exponential decay of
the tails of P (t) observed for the voter, and AB dynamics
either in regular, small world [15], random or Barabási-
Albert scale-free networks (not shown), and reflects the
existence of metastable states at all time scales. This fact
indicates that the anomalous lifetime distribution is linked
to the structure of the network at a mesoscopic level. Such
structure seems to give rise to a number of traps that cause
trapped metastable states at all time scales. To substan-
tiate this claim we next look at some detailed dynamics.

Discussion. Further understanding of the dynamical
process can be obtained by considering the measure called
overlap, O [4]. This characteristic of a link between two
nodes tells us essentially which fraction of their neighbors
is shared by the nodes. Within a community, nodes
tend to share many neighbors, and thus overlap is high,
while edges between communities will have low or zero
overlap. Considering dynamics of competing options on
a network, the overlap can be used to identify spatially
homogenous domains in the network: if the average overlap
〈O〉 of the links in the interface between domains is
low, we may assume that the domain boundaries follow
the community boundaries. On the other hand, if the
overlap at the interfaces is high, it indicates that nodes
within communities are in different states. For the voter
model dynamics we have found that the average overlap
of interface links drops to about 80 percent of the average
value 〈O〉= 0.27 of the whole network, while in the AB
model it drops to under 70 percent. This indicates that in
both models the interfaces between domains lie preferably
in low overlap links, so that domains of the same option
follow the community structure, but in the ABmodel these
domains are correlated with the communities closer.
The difference between the two dynamics is better

understood by looking at snapshots of the dynamics
(fig. 5) which show the characteristic behavior for each
of the models, starting from random initial conditions
(t= 0). In the voter model (left) the homogeneous domains
of nodes with the same option appear to follow the commu-
nity structure, but a particular community (topological
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Fig. 5: Snapshots of the dynamics, with nodes in state A in
black, B in grey, and AB in white circled in black. Simulations
start from random initial conditions. Left: voter model. Right:
AB model.

region) may change the option adopted by the commu-
nity rather quickly (t= 50, 60, 70). At variance with this
behavior, in the AB model (right) spatial domains grow
and homogenize steadily in a community without much
fluctuation. For this dynamics, communities that have
adopted a given option, and which are poorly linked to
the rest of the network, take a long time to be invaded by
a different option, acting therefore as topological traps.
As an example of this we show two long-lived trapped
metastable states at t= 430 and t= 1000, where the inter-
face stayed relatively stable for a prolonged period (∼ 100
and ∼ 1000 time steps, respectively). These different
behaviors reflect in the community structure two different
interfacial dynamics: interfacial noise-driven dynamics for
the voter model, and curvature-driven dynamics for the
AB model with agents in the AB state at the interfaces.
Different realizations of the algorithm to construct the

social-type network produce different detailed structures
of the network. The power law for the fraction of alive
runs in fig. 4 is a statistical effect of the average over such
realizations. The time evolution of the average interface
density on single realizations of the network, 〈ρ〉, is shown
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Fig. 6: (a) Time evolution for the AB model of the average
interface density on different realizations of the network with
2500 agents; 20000 runs on each (empty symbols). The extreme
cases were selected as examples of networks where trapped
metastable states (see text) are found often (©); and found
rarely (△). For comparison, the average over 500 networks
(10 runs on each) is also shown (�). Inset: time evolution for
the voter model of the average interface density for four realiza-
tions of the networks of 2500 agents; 5000 runs on each network.
(b) Time evolution of the interface density in single realizations
of the AB dynamics on a network with 2500 agents. A class
of realizations decay to the absorbing state after a coarsening
stage (solid black lines), while others fall in long-lived trapped
metastable states. The latter display several plateaus, indicat-
ing hierarchical levels of ordering before reaching the absorbing
state, or cascading between several trapped metastable states.

for the AB dynamics in fig. 6a. We observe different
behaviors in the second stage of the decay of 〈ρ〉 depending
on the specific realization of the network: from broad tails
to exponential-like decays, with an intermediate behavior.
On the other hand, and in agreement with our previous
discussion, the voter model dynamics (fig. 6a, inset) is
not sensitive to the details of the network structure. For
the AB model some realizations of the network topology
produce particularly long-lived metastable states, while
in others, corresponding to exponential-like decay of 〈ρ〉,
they are observed rarely. Plots of the interface density
of individual runs on a given network show a class of
realizations with different plateaus (ordering levels) where
the system gets trapped for a long time (fig. 6b). These
trapped metastable states, analogous to those displayed in
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fig. 5, right, correspond to the structure in the network.
The variety of traps and associated different lifetimes
seems to be the mechanism that causes an anomalous
power law distribution for the lifetimes.
We note that although the details of each network real-

ization matter for the occurrence of trapped metastable
states, the community size distribution detected by
the k -clique-percolation method [29] is the same for all
the network realizations that we have considered. This
and other available statistical methods seem not to be
sufficient to discern between the network topologies
producing many or few trapped metastable states.

Summary and conclusions. – We have considered
two dynamical models, the voter and the AB model, in
order to study metastable states and the role of commu-
nity structure in the dynamics of consensus processes.
The voter model dynamics, driven by interfacial noise, is
not particularly sensitive to the mesoscopic structure of
the network: we find that all realizations of the dynam-
ics are of the same class, leading to a type of dynamical
metastable states shared by other complex networks of
high dimensionality without degree correlations. On the
contrary, for the AB dynamics we find different classes
of realizations leading to a power law distribution for the
times to reach consensus. This is explained in terms of
trapped metastable states associated with the structure
of the network. Our result implies that a mean lifetime for
these states does not give a characteristic time scale of the
ordering dynamics. We note that a mean lifetime does not
exist for the zero-temperature kinetic Ising model dynam-
ics on regular or complex networks [24], due to realizations
that lead to trapped metastable states of infinite lifetime
in finite systems. The novelty of our finding is that we have
realizations with any lifetime. For the AB model in a regu-
lar 2D lattice trapped metastable states with stripe-like
configuration have been found [15], but in that case the
distribution of lifetimes is exponential: P (t)∼ e−αt and
the mean lifetime is representative of the dynamics. The
power law distribution for the lifetimes originates here in
the multiplicity of different traps that reflects the meso-
scopic structure of the networks. Simpler configurations of
community structure should be considered in the future in
order to gain a deeper understanding of the microscopic
mechanisms underlying consensus dynamics.
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