4 research outputs found

    Visualization of scientific data in multi-user augmented reality

    Get PDF
    Humanity has always strived to learn more about the origins of our neighboring celestial bodies. With the help of modern rover systems, unknown areas are explored through scientific measurements. With increasingly better sensors, this data becomes more extensive and complex, creating an evident need for new and improved tools. These tools should support the scientists in the collaborative analysis of the recorded measurements. Scientists from different disciplinary backgrounds work together on this analysis. Exploring the data can be made more efficient with the help of intuitive visualization, interaction, and collaborative tools. At the same time, misunderstandings among the experts can be minimized. This thesis investigates how modern augmented reality approaches can support the process of collaborative rover data analysis. Three main aspects are considered: the threedimensional visualization of high-resolution terrain data, the visualization and interaction with rover data, and the integration of multi-user collaboration tools for the collaborative discussion. A mobile augmented reality device, the Microsft HoloLens 2, is used to input, output, and process the data. In order to evaluate the implemented visualization and interaction concepts, an expert interview and several experiments for a user study are prepared in this work. Due to the current COVID-19 pandemic restrictions, both interview and user study could not be conducted. Based on promising informal preliminary user tests, potential improvements of the presented concepts are discussed

    Augmented Reality for Massive Particle Distribution

    Get PDF
    Understanding the behavior of aerosol particles remains a key concern especially during the current corona pandemic times. In this paper, we present a method for visualizing the distribution of aerosol particles in augmented reality (AR) using the Microsoft Hololens device. We use this technology to obtain better spatial perception of particles in the real world which are invisible to the naked eye. As a case study, we show the flow field of exhaled aerosols with and without wearing a mask. To do this, we first measure the particle flow under laboratory conditions. Then we trace a certain amount of exhaled particles. Using the particle system component of the Unity game engine, our AR application also takes each particle's 3D position into consideration. Furthermore, 3 different particle visualization approaches are evaluated to develop the ability to visualize the maximum number of particles on Microsoft HoloLens without compromising on visual quality. Finally, we were able to show virtual particles in the real world. Without mask they propagate forward and with mask they ascend. With an optimized implementation, we achieved a simultaneous display of nearly 80,000 moving particles at an average rate of 35 frames per second

    Automatisierte Umgebungserfassung in Mixed Reality

    Get PDF
    In vielen Bereichen der modernen Forschung und Industrie wird international von mehreren Standorten aus an einem gemeinsamen Projekt gearbeitet. Mithilfe des Internets ist es bereits über weite Entfernungen hinweg möglich, gemeinsam miteinander zu kommunizieren und kollaborativ zusammenzuarbeiten. Dennoch befinden sich die jeweiligen Parteien in unterschiedlichen Umgebungen. In dieser Arbeit wird eine Anwendung implementiert, welche die physisch-reale Umgebung eines Benutzer erfasst und in einer dreidimensionalen Rekonstruktion speichert. Sowohl Form, als auch farbiges Erscheinungsbild beliebig großer Umgebungen soll mithilfe moderner Mixed Reality Technik in Echtzeit aufgenommen und anderen über Netzwerk verbundenen Teilnehmern angezeigt werden. Diese Teilnehmer sollen sich unabhängig voneinander frei in der rekonstruierten Umgebung bewegen können. Eine mobile Mixed Reality Brille, die Microsoft HoloLens, soll dabei sowohl Ein- und Ausgabe, als auch die Verarbeitung der Daten übernehmen. Mithilfe der integrierten Sensoren und Kameras wird die Umgebung vermessen und Fotos der Oberflächen aufgenommen. Diese Informationen werden in einer auf der HoloLens laufenden Anwendung verarbeitet. Die dreidimensionale Rekonstruktion kann mithilfe mehrerer Optimierungsverfahren in Echtzeit mit den begrenzten Hardwareressourcen der HoloLens dargestellt werden. Mehrere Teilnehmer können sich mit einer HoloLens verbinden, um die erfasste Umgebung zu empfangen

    Real-time immersive visualization for satellite configuration and version comparison

    Get PDF
    Spacecraft design and development is a complex Task which requires a long lifecycle and many phases of iterative construction. Thus, there are usually many versions of configuration design evolving over time. A clear understanding and comparison of these different Versions of spacecraft configurations can bring benefits to both stakeholders and domain experts of the project. However, usually the configuration and system data is stored in textual format in tables and in files which is not efficient to compare results by checking all the subsystem and parameters in different versions one by one. As an alternative, this paper gives a detailed insight how to compare versions by means of 3D visualization and Virtual Reality (VR) technologies. The basis of our approach is the Virtual Satellite (VirSat) which is the standard tool for concurrent engineering studies at the German Aerospace Center (DLR). The key performance indicators of an early space mission design are the mass, the power consumption, and the temperature. In order to Highlight differences of these quantities and distribution of key performance indicators, the VirSat uses color coding for more intuitive understanding. To analyze the changes of geometry information, additional two visualization modes have been integrated for comparing and indicating the differences between versions. In the first mode, two versions of configurations are visually overlapped. The differences are indicated by special colors. In the second mode, different versions of the design yield a successive animation in order to follow the design evolution. Both modes require model transformation from VirSat's central system data model to visualization model which is used for appropriate visualization approaches. The paper gives a detailed architectural overview and discusses benefits and future opportunities
    corecore