Augmented Reality for Massive Particle Distribution

Abstract

Understanding the behavior of aerosol particles remains a key concern especially during the current corona pandemic times. In this paper, we present a method for visualizing the distribution of aerosol particles in augmented reality (AR) using the Microsoft Hololens device. We use this technology to obtain better spatial perception of particles in the real world which are invisible to the naked eye. As a case study, we show the flow field of exhaled aerosols with and without wearing a mask. To do this, we first measure the particle flow under laboratory conditions. Then we trace a certain amount of exhaled particles. Using the particle system component of the Unity game engine, our AR application also takes each particle's 3D position into consideration. Furthermore, 3 different particle visualization approaches are evaluated to develop the ability to visualize the maximum number of particles on Microsoft HoloLens without compromising on visual quality. Finally, we were able to show virtual particles in the real world. Without mask they propagate forward and with mask they ascend. With an optimized implementation, we achieved a simultaneous display of nearly 80,000 moving particles at an average rate of 35 frames per second

    Similar works