120 research outputs found

    Nucleation and cluster formation in low-density nucleonic matter: A mechanism for ternary fission

    Get PDF
    Ternary fission yields in the reaction 241Pu(nth,f) are calculated using a new model which assumes a nucleation-time moderated chemical equilibrium in the low density matter which constitutes the neck region of the scissioning system. The temperature, density, proton fraction and fission time required to fit the experimental data are derived and discussed. A reasonably good fit to the experimental data is obtained. This model provides a natural explanation for the observed yields of heavier isotopes relative to those of the lighter isotopes, the observation of low proton yields relative to 2H and 3H yields and the non-observation of 3He, all features which are shared by similar thermal neutron induced and spontaneous fissioning systems.Comment: 6 pages, 3 figure

    Inter and intra-estuary variability in ingress, condition and settlement of the American eel, Anguilla rostrata: implications for estimating and understanding recruitment

    Get PDF
    The objective of this study was to quantify spatial and temporal variability of anguillid glass eel ingress within and between adjacent watersheds in order to help illuminate the mechanisms moderating annual recruitment. Because single fixed locations are often used to assess annual recruitment, the intra-annual dynamics of ingress across multiple sites often remains unresolved. To address this question, plankton nets and eel collectors were deployed weekly to synoptically quantify early stage Anguilla rostrata abundance at 12 sites across two New Jersey estuaries over an ingress season. Numbers of early-stage glass eels collected at the inlet mouths were moderately variable within and between estuaries over time and showed evidence for weak lunar phase and water temperature correlations. The relative condition of glass eels, although highly variable, declined significantly over the ingress season and indicated a tendency for lower condition A. rostrata to colonize sites in the lower estuary. Accumulations of glass eels and early-stage elvers retrieved from collectors (one to >1500 A. rostrata per collector) at lower estuary sites were highly variable over time, producing only weak correlations between estuaries. By way of contrast, development into late-stage elvers, coupled with the large-scale colonization of up-river sites, was highly synchronized between and within estuaries and contingent on water temperatures reaching c. 10-12 • C. Averaged over the ingress season, abundance estimates were remarkably consistent between paired sites across estuaries, indicating a low degree of interestuary variability. Within an estuary, however, abundance estimates varied considerably depending on location. These results and methodology have important implications for the planning and interpretation of early-stage anguillid eel surveys as well as the understanding of the dynamic nature of ingress and the spatial scales over which recruitment varies

    From femtonova to supernova: Heavy-ion collisions and the supernova equation of state

    Get PDF
    AB Calculations using astrophysical equations of state at low densities comparable to that of the neutrino emission surface in supernovae and accretion disks are confronted with experimental results from heavy ion collisions. An extension of previous work shows that it is important to include all of the measured experimental data to draw conclusions about the astrophysical equation of state. Armed with this information, the calculations of the astrophysical equation of state are significantly constrained. Predictions of temperatures and densities sampled in black hole accretion disks are compared to those sampled in the experimental data

    Density determinations in heavy ion collisions

    Get PDF
    The experimental determination of freeze-out temperatures and densities from the yields of light elements emitted in heavy ion collisions is discussed. Results from different experimental approaches are compared with those of model calculations carried out with and without the inclusion of medium effects. Medium effects become of relevance for baryon densities above 5×104\approx 5 \times 10^{-4} fm3^{-3}. A quantum statistical (QS) model incorporating medium effects is in good agreement with the experimentally derived results at higher densities. A densitometer based on calculated chemical equilibrium constants is proposed.Comment: 5 pages, 3 figure

    Symmetry energy and the isoscaling properties of the fragments produced in 40^{40}Ar, 40^{40}Ca + 58^{58}Fe, 58^{58}Ni reactions at 25 - 53 MeV/nucleon

    Full text link
    The symmetry energy and the isoscaling properties of the fragments produced in the multifragmentation of 40^{40}Ar, 40^{40}Ca + 58^{58}Fe, 58^{58}Ni reactions at 25 - 53 MeV/nucleon were investigated within the framework of statistical multifragmentation model. The isoscaling parameters α\alpha, from the primary (hot) and secondary (cold) fragment yield distributions, were studied as a function of excitation energy, isospin (neutron-to-proton asymmetry) and fragment symmetry energy. It is observed that the isoscaling parameter α\alpha decreases with increasing excitation energy and decreasing symmetry energy. The parameter α\alpha is also observed to increase with increasing difference in the isospin of the fragmenting system. The sequential decay of the primary fragments into secondary fragments, when studied as a function of excitation energy and isospin of the fragmenting system, show very little influence on the isoscaling parameter. The symmetry energy however, has a strong influence on the isospin properties of the hot fragments. The experimentally observed scaling parameters can be explained by symmetry energy that is significantly lower than that for the ground state nuclei near saturation density. The results indicate that the properties of hot nuclei at excitation energies, densities and isospin away from the normal ground state nuclei could be significantly different.Comment: 14 pages, 15 figure

    An experimental survey of the production of alpha decaying heavy elements in the reactions of 238^{238}U +232^{232}Th at 7.5-6.1 MeV/nucleon

    Full text link
    The production of alpha particle decaying heavy nuclei in reactions of 7.5-6.1 MeV/nucleon 238^{238}U +232^{232}Th has been explored using an in-beam detection array composed of YAP scintillators and gas ionization chamber-Si telescopes. Comparisons of alpha energies and half-lives for the observed products with those of the previously known isotopes and with theoretically predicted values indicate the observation of a number of previously unreported alpha emitters. Alpha particle decay energies reaching as high as 12 MeV are observed. Many of these are expected to be from decay of previously unseen relatively neutron rich products. While the contributions of isomeric states require further exploration and specific isotope identifications need to be made, the production of heavy isotopes with quite high atomic numbers is suggested by the data.Comment: 12 pages, 12 figure

    Nuclear expansion and symmetry energy of hot nuclei

    Full text link
    The decrease in the symmetry energy of hot nuclei populated in 58^{58}Ni + 58^{58}Ni, 58^{58}Fe + 58^{58}Ni and 58^{58}Fe + 58^{58}Fe reactions at beam energies of 30, 40, and 47 MeV/nucleon, as a function of excitation energy is studied. It is observed that this decrease is mainly a consequence of increasing expansion or decreasing density rather than the increasing temperature. The results are in good agreement with the recently reported microscopic calculation based on the Thomas-Fermi approach. An empirical relation to study the symmetry energy of finite nuclei in various mass region is proposed.Comment: 10 pages, 2 figure

    Habitat and diet overlap of 4 piscivorous fishes: variation on the inner continental shelf off New Jersey

    Get PDF
    Piscivorous fishes, many of which are economically valuable, play an important role in marine ecosystems and have the potential to affect fish and invertebrate populations at lower trophic levels. Therefore, a quantitative understanding of the foraging ecology of piscivores is needed for ecosystem-based fishery management plans to be successful. Abundance and stomach contents of seasonally co-occurring piscivores were examined to determine overlap in resource use for Summer Flounder (Paralichthys dentatus; 206–670 mm total length [TL]), Weakfish (Cynoscion regalis; 80–565 mm TL), Bluefish (Pomatomus saltatrix; 55–732 mm fork length [FL]), and Striped Bass (Morone saxatilis; 422–920 mm FL). We collected samples from monthly, fishery-independent trawl surveys conducted on the inner continental shelf (5–27 m) off New Jersey from June to October 2005. Fish abundances and overlaps in diet and habitat varied over this study period. A wide range of fish and invertebrate prey was consumed by each species. Diet composition (determined from 1997 stomachs with identifiable contents) varied with ontogeny (size) and indicated limited overlap between most of the species size classes examined. Although many prey categories were shared by the piscivores examined, different temporal and spatial patterns in habitat use seemed to alleviate potential competition for prey. Nevertheless, the degree of overlap in both fish distributions and diets increased severalfold in the fall as species left estuaries and migrated across and along the study area. Therefore, the transitional period of fall migration, when fish densities are higher than at other times of the year, may be critical for unraveling resource overlap for these seasonally migrant predators

    Analysis of fragment yield ratios in the nuclear phase transition

    Get PDF
    The critical phenomena of the liquid-gas phase transition has been investigated in the reactions 78,86Kr+58,64Ni at beam energy of 35 MeV/nucleon using the Landau free energy approach with isospin asymmetry as an order parameter. Fits to the free energy of fragments showed three minima suggesting the system to be in the regime of a first order phase transition. The relation m =-{\partial}F/{\partial}H, which defines the order parameter and its conjugate field H, has been experimentally verified from the linear dependence of the mirror nuclei yield ratio data, on the isospin asymmetry of the source. The slope parameter, which is a measure of the distance from a critical temperature, showed a systematic decrease with increasing excitation energy of the source. Within the framework of the Landau free energy approach, isoscaling provided similar results as obtained from the analysis of mirror nuclei yield ratio data. We show that the external field is primarily related to the minimum of the free energy, which implies a modification of the source concentration \Delta used in isospin studies
    corecore