642 research outputs found
Spatial parcellations, spectral filtering, and connectivity measures in fMRI: Optimizing for discrimination.
The analysis of Functional Connectivity (FC) is a key technique of fMRI, having been used to distinguish brain states and conditions. While many approaches to calculating FC are available, there have been few assessments of their differences, making it difficult to choose approaches and compare results. Here, we assess the impact of methodological choices on discriminability, using a fully controlled dataset of continuous active states involving basic visual and motor tasks, providing robust localized FC changes. We tested a range of anatomical and functional parcellations, including the AAL atlas, parcellations derived from the Human Connectome Project and Independent Component Analysis (ICA) of many dimensionalities. We measure amplitude, covariance, correlation and regularized partial correlation under different temporal filtering choices. We evaluate features derived from these methods for discriminating states using MVPA. We find that multidimensional parcellations derived from functional data performed similarly, outperforming an anatomical atlas, with correlation and partial correlation (p<0.05, FDR). Partial correlation, with appropriate regularization, outperformed correlation. Amplitude and covariance generally discriminated less well, although gave good results with high-dimensionality ICA. We found that discriminative FC properties are frequency specific; higher frequencies performed surprisingly well under certain configurations of atlas choices and dependency measures, with ICA-based parcellations revealing greater discriminability at high frequencies compared to other parcellations. Methodological choices in FC analyses can have a profound impact on results and can be selected to optimize accuracy, interpretability, and sharing of results. This work contributes to a basis for consistent selection of approaches to estimating and analyzing FC
Effect of microsegregation and heat treatment on localised γ and γ’ compositions in single crystal Ni-based superalloys
The present work investigates the impact of residual segregation on the underlying microstructure of a 3rd generation single crystal, nickel-based superalloy to understand potential variation in mechanical behaviour between dendrite cores and interdendritic regions. Despite the applied heat-treatments, chemical variation between dendrite cores and interdendritic regions persisted particularly for elements Re, Nb and Ta. Atom probe tomography (APT) was utilized for its nanoscale capability to map site-specific chemical changes in the γ matrix, γ’ precipitates and across the γ/γ’ interface. Greater interfacial segregation of Re, matched by a corresponding depletion of Ni were observed within dendrite cores, with the extent found to increase following heat treatment. Differences in lattice parameters between dendrite cores and interdendritic regions were identified, with larger lattice misfits associated with interdendritic regions
Reduced coupling between offline neural replay events and default mode network activation in schizophrenia
Schizophrenia is characterized by an abnormal resting state and default mode network brain activity. However, despite intense study, the mechanisms linking default mode network dynamics to neural computation remain elusive. During rest, sequential hippocampal reactivations, known as 'replay', are played out within default mode network activation windows, highlighting a potential role of replay-default mode network coupling in memory consolidation and model-based mental simulation. Here, we test a hypothesis of reduced replay-default mode network coupling in schizophrenia, using magnetoencephalography and a non-spatial sequence learning task designed to elicit off-task (i.e. resting state) neural replay. Participants with a diagnosis of schizophrenia (n = 28, mean age 28.2 years, range 20-40, 6 females, 13 not taking antipsychotic medication) and non-clinical control participants (n = 29, mean age 28.1 years, range 18-45, 6 females, matched at group level for age, intelligence quotient, gender, years in education and working memory) underwent a magnetoencephalography scan both during task completion and during a post-task resting state session. We used neural decoding to infer the time course of default mode network activation (time-delay embedding hidden Markov model) and spontaneous neural replay (temporally delayed linear modelling) in resting state magnetoencephalography data. Using multiple regression, we then quantified the extent to which default mode network activation was uniquely predicted by replay events that recapitulated the learned task sequences (i.e. 'task-relevant' replay-default mode network coupling). In control participants, replay-default mode network coupling was augmented following sequence learning, an augmentation that was specific for replay of task-relevant (i.e. learned) state transitions. This task-relevant replay-default mode network coupling effect was significantly reduced in schizophrenia (t(52) = 3.93, P = 0.018). Task-relevant replay-default mode network coupling predicted memory maintenance of learned sequences (ρ(52) = 0.31, P = 0.02). Importantly, reduced task-relevant replay-default mode network coupling in schizophrenia was not explained by differential replay or altered default mode network dynamics between groups nor by reference to antipsychotic exposure. Finally, task-relevant replay-default mode network coupling during rest correlated with stimulus-evoked default mode network modulation as measured in a separate task session. In the context of a proposed functional role of replay-default mode network coupling, our findings shed light on the functional significance of default mode network abnormalities in schizophrenia and provide for a consilience between task-based and resting state default mode network findings in this disorder
Changes in electrophysiological static and dynamic human brain functional architecture from childhood to late adulthood
Published: 04 November 2020This magnetoencephalography study aimed at characterizing age-related changes in resting-state functional brain organization from mid-childhood to late adulthood. We investigated neuromagnetic brain activity at rest in 105 participants divided into three age groups: children (6–9 years), young adults (18–34 years) and healthy elders (53–78 years). The effects of age on static resting-state functional brain integration were assessed using band-limited power envelope correlation, whereas those on transient functional brain dynamics were disclosed using hidden Markov modeling of power envelope activity. Brain development from childhood to adulthood came with (1) a strengthening of functional integration within and between resting-state networks and (2) an increased temporal stability of transient (100–300 ms lifetime) and recurrent states of network activation or deactivation mainly encompassing lateral or medial associative neocortical areas. Healthy aging was characterized by decreased static resting-state functional integration and dynamic stability within the primary visual network. These results based on electrophysiological measurements free of neurovascular biases suggest that functional brain integration mainly evolves during brain development, with limited changes in healthy aging. These novel electrophysiological insights into human brain functional architecture across the lifespan pave the way for future clinical studies investigating how brain disorders affect brain development or healthy aging.This study was supported by the Action de Recherche Concertée Consolidation (ARCC, “Characterizing the spatio-temporal dynamics and the electrophysiological bases of resting state networks”, ULB, Brussels, Belgium), the Fonds Erasme (Research Convention “Les Voies du Savoir”,Brussels, Belgium) and the Fonds de la Recherche Scientifique (Research Convention: T.0109.13, FRS-FNRS, Brussels, Belgium). Nicolas Coquelet has been supported by the ARCC, by the Fonds Erasme (Research Convention “Les Voies du Savoir”, Brussels, Belgium) and is supported by the FRS-FNRS (Research Convention: Excellence of Science EOS “MEMODYN”). Alison Mary is Postdoctoral Researcher at the FRS-FNRS. Maxime Niesen and Marc Vander Ghinst have been supported by the Fonds Erasme. Mariagrazia Ranzini is supported by the Marie Sklodowska-Curie European Union’s Horizon 2020 research and innovation program (Research Grant: 839394). Mathieu Bourguignon is supported by the program Attract of Innoviris (Research Grant 2015-BB2B-10, Brussels, Belgium), the Marie Sklodowska-Curie Action of the European Commission (Research Grant: 743562) and by the Spanish Ministery of Economy and Competitiveness (Research Grant: PSI2016-77175-P). Xavier De Tiège is Postdoctorate Clinical Master Specialist at the FRS-FNRS. The MEG project at the CUB Hôpital Erasme is financially supported by the Fonds Erasme
Bayesian Joint Detection-Estimation of cerebral vasoreactivity from ASL fMRI data
International audienceAlthough the study of cerebral vasoreactivity using fMRI is mainly conducted through the BOLD fMRI modality, owing to its relatively high signal-to-noise ratio (SNR), ASL fMRI provides a more interpretable measure of cerebral vasoreactivity than BOLD fMRI. Still, ASL suffers from a low SNR and is hampered by a large amount of physiological noise. The current contribution aims at improving the re- covery of the vasoreactive component from the ASL signal. To this end, a Bayesian hierarchical model is proposed, enabling the recovery of per- fusion levels as well as fitting their dynamics. On a single-subject ASL real data set involving perfusion changes induced by hypercapnia, the approach is compared with a classical GLM-based analysis. A better goodness-of-fit is achieved, especially in the transitions between baseline and hypercapnia periods. Also, perfusion levels are recovered with higher sensitivity and show a better contrast between gray- and white matter
Evaluating functional brain organization in individuals and identifying contributions to network overlap
Individual differences in the spatial organization of resting-state networks have received increased attention in recent years. Measures of individual-specific spatial organization of brain networks and overlapping network organization have been linked to important behavioral and clinical traits and are therefore potential biomarker targets for personalized psychiatry approaches. To better understand individual-specific spatial brain organization, this paper addressed three key goals. First, we determined whether it is possible to reliably estimate weighted (non-binarized) resting-state network maps using data from only a single individual, while also maintaining maximum spatial correspondence across individuals. Second, we determined the degree of spatial overlap between distinct networks, using test-retest and twin data. Third, we systematically tested multiple hypotheses (spatial mixing, temporal switching, and coupling) as candidate explanations for why networks overlap spatially. To estimate weighted network organization, we adopt the Probabilistic Functional Modes (PROFUMO) algorithm, which implements a Bayesian framework with hemodynamic and connectivity priors to supplement optimization for spatial sparsity/independence. Our findings showed that replicable individual-specific estimates of weighted resting-state networks can be derived using high-quality fMRI data within individual subjects. Network organization estimates using only data from each individual subject closely resembled group-informed network estimates (which was not explicitly modeled in our individual-specific analyses), suggesting that cross-subject correspondence was largely maintained. Furthermore, our results confirmed the presence of spatial overlap in network organization, which was replicable across sessions within individuals and in monozygotic twin pairs. Intriguingly, our findings provide evidence that overlap between 2-network pairs is indicative of coupling. These results suggest that regions of network overlap concurrently process information from both contributing networks, potentially pointing to the role of overlapping network organization in the integration of information across multiple brain systems
Disambiguating brain functional connectivity
Functional connectivity (FC) analyses of correlations of neural activity are used extensively in neuroimaging and electrophysiology to gain insights into neural interactions. However, analyses assessing changes in correlation fail to distinguish effects produced by sources as different as changes in neural signal amplitudes or noise levels. This ambiguity substantially diminishes the value of FC for inferring system properties and clinical states. Network modelling approaches may avoid ambiguities, but require specific assumptions. We present an enhancement to FC analysis with improved specificity of inferences, minimal assumptions and no reduction in flexibility. The Additive Signal Change (ASC) approach characterizes FC changes into certain prevalent classes of signal change that involve the input of additional signal to existing activity. With FMRI data, the approach reveals a rich diversity of signal changes underlying measured changes in FC, suggesting that it could clarify our current understanding of FC changes in many contexts. The ASC method can also be used to disambiguate other measures of dependency, such as regression and coherence, providing a flexible tool for the analysis of neural data
Local GABA concentration is related to network-level resting functional connectivity
Anatomically plausible networks of functionally inter-connected regions have been reliably demonstrated at rest, although the neurochemical basis of these ‘resting state networks’ is not well understood. In this study, we combined magnetic resonance spectroscopy (MRS) and resting state fMRI and demonstrated an inverse relationship between levels of the inhibitory neurotransmitter GABA within the primary motor cortex (M1) and the strength of functional connectivity across the resting motor network. This relationship was both neurochemically and anatomically specific. We then went on to show that anodal transcranial direct current stimulation (tDCS), an intervention previously shown to decrease GABA levels within M1, increased resting motor network connectivity. We therefore suggest that network-level functional connectivity within the motor system is related to the degree of inhibition in M1, a major node within the motor network, a finding in line with converging evidence from both simulation and empirical studies
- …