631 research outputs found

    Scientific Objectives of Deep Space Investigations. the Origin and Evolution of the Solar System

    Get PDF
    Spacecraft data used to explain origin and evolution of solar syste

    High power, high repetition rate laser-based sources for attosecond science

    Get PDF
    Within the last two decades attosecond science has been established as a novel research field providing insights into the ultrafast electron dynamics that follows a photoexcitation or photoionization process. Enabled by technological advances in ultrafast laser amplifiers, attosecond science has been in turn, a powerful engine driving the development of novel sources of intense ultrafast laser pulses. This article focuses on the development of high repetition rate laser-based sources delivering high energy pulses with a duration of only a few optical cycles, for applications in attosecond science. In particular, a high power, high repetition rate optical parametric chirped pulse amplification system is described, which was developed to drive an attosecond pump-probe beamline targeting photoionization experiments with electron-ion coincidence detection at high acquisition rates

    Analysis of a model with a common source of CP violation

    Full text link
    We work in a model where all CP violating phenomena have a common source. CP is spontaneously broken at a large scale VV through the phase of a complex singlet scalar. An additional SU(2)LSU(2)_L singlet vector-like down-type quark relates this high scale CP violation to low energy. We quantitatively analyze this model in the quark sector. We obtain the numerical values of the parameters of the Lagrangian in the quark sector for a specific ansatz of the 4×44\times4 down-type quark mass matrix where the weak phase is generated minimally. ZbˉbZ \bar b b vertex will modify in presence of the extra vector-like down-type quark. From the experimental lower bound of the partial decay width ZbˉbZ\to \bar b b we find out the lower bound of the additional down-type quark mass. Tree level flavor changing neutral current appears in this model due to the presence of the extra vector-like down-type quark. We give the range of values of the mass splitting ΔmBq\Delta m_{B_q} in Bq0Bˉq0B^0_q-{\bar B}^0_q system using SM box, ZZ mediating tree level and ZZ mediating one loop diagrams together for both q=d,sq=d, s. We find out the analytical expression for Γ12q\Gamma_{12}^q in this model from standard box, ZZ and Higgs mediated penguin diagrams for Bq0Bˉq0B^0_q-{\bar B}^0_q system, q=d,sq=d,s. From this we numerically evaluate the decay width difference ΔΓBq/ΓBq|\Delta\Gamma_{B_q}/\Gamma_{B_q}|. We also find out the numerical values of the CP asymmetry parameters aJa_J and aπa_\pi for the decays Bd0J/ψKsB^0_d\to J/\psi K_s and Bd0π+πB^0_d\to \pi^+ \pi^- respectively. We get the lower bound of the scale VV through the upper bound of the strong CP phase.Comment: 20 pages, no figures New materials and references have been added. Text has been modified. To be appear in J.Phys.

    Attosecond streaking of photoelectron emission from disordered solids

    Full text link
    Attosecond streaking of photoelectrons emitted by extreme ultraviolet light has begun to reveal how electrons behave during their transport within simple crystalline solids. Many sample types within nanoplasmonics, thin-film physics, and semiconductor physics, however, do not have a simple single crystal structure. The electron dynamics which underpin the optical response of plasmonic nanostructures and wide-bandgap semiconductors happen on an attosecond timescale. Measuring these dynamics using attosecond streaking will enable such systems to be specially tailored for applications in areas such as ultrafast opto-electronics. We show that streaking can be extended to this very general type of sample by presenting streaking measurements on an amorphous film of the wide-bandgap semiconductor tungsten trioxide, and on polycrystalline gold, a material that forms the basis of many nanoplasmonic devices. Our measurements reveal the near-field temporal structure at the sample surface, and photoelectron wavepacket temporal broadening consistent with a spread of electron transport times to the surface

    Chirp-control of resonant high-order harmonic generation in indium ablation plumes driven by intense few-cycle laser pulses

    Get PDF
    We have studied high-order harmonic generation (HHG) in an indium ablation plume driven by intense few-cycle laser pulses centered at 775 nm as a function of the frequency chirp of the laser pulse. We found experimentally that resonant emission lines between 19.7 eV and 22.3 eV (close to the 13th and 15th harmonic of the laser) exhibit a strong, asymmetric chirp dependence, with pronounced intensity modulations. The chirp dependence is reproduced by our numerical time-dependent Schrödinger equation simulations of a resonant HHG by the model indium ion. As demonstrated with our separate simulations of HHG within the strong field approximation, the resonance can be understood in terms of the chirp-dependent HHG photon energy coinciding with the energy of an autoionizing state to ground state transition with high oscillator strength. This supports the validity of the general theory of resonant four-step HHG in the few-cycle limit

    Physical Acoustics

    Get PDF
    Contains reports on four research projects.U. S. Navy (Office of Naval Research) under Contract Nonr- 1841(42

    Effects of 8 weeks of CPAP on lipid-based oxidative markers in obstructive sleep apnea: a randomized trial

    Get PDF
    Dyslipidaemia and increased oxidative stress have been reported in severe obstructive sleep apnea, and both may be related to the development of cardiovascular disease. We have previously shown in a randomized crossover study in patients with moderate to severe obstructive sleep apnea that therapeutic continuous positive airway pressure treatment for 8 weeks improved postprandial triglycerides and total cholesterol when compared with sham continuous positive airway pressure. From this study we have now compared the effect of 8 weeks of therapeutic continuous positive airway pressure and sham continuous positive airway pressure on oxidative lipid damage and plasma lipophilic antioxidant levels. Unesterified cholesterol, esterified unsaturated fatty acids (cholesteryl linoleate: C18:2; and cholesteryl arachidonate: C20:4; the major unsaturated and oxidizable lipids in low-density lipoproteins), their corresponding oxidized products [cholesteryl ester-derived lipid hydroperoxides and hydroxides (CE-O(O)H)] and antioxidant vitamin E were assessed at 20:30 hours before sleep, and at 06:00 and 08:30 hours after sleep. Amongst the 29 patients completing the study, three had incomplete or missing [CE-O(O)H] data. The mean apnea -hypopnoea index, age and body mass index were 38 per hour, 49 years and 32 kg m(-2) , respectively. No differences in lipid-based oxidative markers or lipophilic antioxidant levels were observed between the continuous positive airway pressure and sham continuous positive airway pressure arms at any of the three time-points [unesterified cholesterol 0.01 mm, P > 0.05; cholesteryl linoleate: C18:2 0.05 mm, P > 0.05; cholesteryl arachidonate: C20:4 0.02 mm, P = 0.05; CE-O(O)H 2.5 nm, P > 0.05; and lipid-soluble antioxidant vitamin E 0.03 μm, P > 0.05]. In this study, accumulating CE-O(O)H, a marker of lipid oxidation, does not appear to play a role in oxidative stress in obstructive sleep apnea.National Health and Medical Research Council project grant 30193

    Synchronized pulses generated at 20 eV and 90 eV for attosecond pump-probe experiments

    No full text
    The development of attosecond pulses across different photon energies is an essential precursor to performing pump–probe attosecond experiments in complex systems, where the potential of attosecond science1 can be further developed2,3. We report the generation and characterization of synchronized extreme ultraviolet (90 eV) and vacuum ultraviolet (20 eV) pulses, generated simultaneously via high-harmonic generation. The vacuum ultraviolet pulses are well suited for pump–probe experiments that exploit the high photo-ionization cross-sections of many molecules in this spectral region4 as well as the higher photon flux due to the higher conversion efficiency of the high harmonic generation process at these energies5. We temporally characterized all pulses using the attosecond streaking technique6 and the FROG-CRAB retrieval method7. We report 576 ± 16 as pulses at 20 eV and 257 ± 21 as pulses at 90 eV. Our demonstration of synchronized attosecond pulses at different photon energies, which are inherently jitter-free due to the common-path geometry implemented, offers unprecedented possibilities for pump–probe studies

    Hirulog-1 and -B2 thrombin specificity

    Full text link
    corecore