18 research outputs found
Engineering a campus-wide accessible music library
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2005.Includes bibliographical references.The Library Access to Music Project has created a new kind of music library at the Massachusetts Institute of Technology. The library is always open and available in dormitory rooms and classrooms, because it transmits music on demand over the Institute's cable television system. By using the analog cable television system, LAMP differs from existing commercial offerings in that essentially any musical recording may be added to the collection - not just recordings where "digital rights" have been obtained. Additionally, LAMP is orders of magnitude less expensive than existing commercial offerings, and it is compatible with a much wider range of receiving apparatuses. With these advantages come unfortunate limitations that spring from LAMP's technical architecture and posture under copyright law. Nonetheless, LAMP has been a moderate success since its opening in October 2004, playing an average of 580 songs per day.by Keith J. Winstein.M.Eng
Mosh: An Interactive Remote Shell for Mobile Clients
Mosh (mobile shell) is a remote terminal application that supports intermittent connectivity, allows roaming, and speculatively and safely echoes user keystrokes for better interactive response over high-latency paths. Mosh is built on the State Synchronization Protocol (SSP), a new UDP-based protocol that securely synchronizes client and server state, even across changes of the clientâs IP address. Mosh uses SSP to synchronize a character-cell terminal emulator, maintaining terminal state at both client and server to predictively echo keystrokes. Our evaluation analyzed keystroke traces from six different users covering a period of 40 hours of real-world usage. Mosh was able to immediately display the effects of 70% of the user keystrokes. Over a commercial EV-DO (3G) network, median keystroke response latency with Mosh was less than 5 ms, compared with 503 ms for SSH. Mosh is free software, available from http://mosh.mit.edu. It was downloaded more than 15,000 times in the first week of its release.National Science Foundation (U.S.) (NSF grant 1040072)National Science Foundation (U.S.) (NSF grant 0721702
Multidecadal observations of the Antarctic ice sheet from restored analog radar records.
Airborne radar sounding can measure conditions within and beneath polar ice sheets. In Antarctica, most digital radar-sounding data have been collected in the last 2 decades, limiting our ability to understand processes that govern longer-term ice-sheet behavior. Here, we demonstrate how analog radar data collected over 40 y ago in Antarctica can be combined with modern records to quantify multidecadal changes. Specifically, we digitize over 400,000 line kilometers of exploratory Antarctic radar data originally recorded on 35-mm optical film between 1971 and 1979. We leverage the increased geometric and radiometric resolution of our digitization process to show how these data can be used to identify and investigate hydrologic, geologic, and topographic features beneath and within the ice sheet. To highlight their scientific potential, we compare the digitized data with contemporary radar measurements to reveal that the remnant eastern ice shelf of Thwaites Glacier in West Antarctica had thinned between 10 and 33% between 1978 and 2009. We also release the collection of scanned radargrams in their entirety in a persistent public archive along with updated geolocation data for a subset of the data that reduces the mean positioning error from 5 to 2.5 km. Together, these data represent a unique and renewed extensive, multidecadal historical baseline, critical for observing and modeling ice-sheet change on societally relevant timescales
The ENIGMA Stroke Recovery Working Group: Big data neuroimaging to study brainâbehavior relationships after stroke
The goal of the Enhancing Neuroimaging Genetics through MetaâAnalysis (ENIGMA) Stroke Recovery working group is to understand brain and behavior relationships using wellâpowered metaâ and megaâanalytic approaches. ENIGMA Stroke Recovery has data from over 2,100 stroke patients collected across 39 research studies and 10 countries around the world, comprising the largest multisite retrospective stroke data collaboration to date. This article outlines the efforts taken by the ENIGMA Stroke Recovery working group to develop neuroinformatics protocols and methods to manage multisite stroke brain magnetic resonance imaging, behavioral and demographics data. Specifically, the processes for scalable data intake and preprocessing, multisite data harmonization, and largeâscale stroke lesion analysis are described, and challenges unique to this type of big data collaboration in stroke research are discussed. Finally, future directions and limitations, as well as recommendations for improved data harmonization through prospective data collection and data management, are provided
Data-driven biomarkers better associate with stroke motor outcomes than theory-based biomarkers.
Chronic motor impairments are a leading cause of disability after stroke. Previous studies have associated motor outcomes with the degree of damage to predefined structures in the motor system, such as the corticospinal tract. However, such theory-based approaches may not take full advantage of the information contained in clinical imaging data. The present study uses data-driven approaches to model chronic motor outcomes after stroke and compares the accuracy of these associations to previously-identified theory-based biomarkers. Using a cross-validation framework, regression models were trained using lesion masks and motor outcomes data from 789 stroke patients from the Enhancing NeuroImaging Genetics through Meta Analysis (ENIGMA) Stroke Recovery Working Group. Using the explained variance metric to measure the strength of the association between chronic motor outcomes and imaging biomarkers, we compared theory-based biomarkers, like lesion load to known motor tracts, to three data-driven biomarkers: lesion load of lesion-behaviour maps, lesion load of structural networks associated with lesion-behaviour maps, and measures of regional structural disconnection. In general, data-driven biomarkers had stronger associations with chronic motor outcomes accuracy than theory-based biomarkers. Data-driven models of regional structural disconnection performed the best of all models tested (R 2 = 0.210, P < 0.001), performing significantly better than the theory-based biomarkers of lesion load of the corticospinal tract (R 2 = 0.132, P < 0.001) and of multiple descending motor tracts (R 2 = 0.180, P < 0.001). They also performed slightly, but significantly, better than other data-driven biomarkers including lesion load of lesion-behaviour maps (R 2 = 0.200, P < 0.001) and lesion load of structural networks associated with lesion-behaviour maps (R 2 = 0.167, P < 0.001). Ensemble models - combining basic demographic variables like age, sex, and time since stroke - improved the strength of associations for theory-based and data-driven biomarkers. Combining both theory-based and data-driven biomarkers with demographic variables improved predictions, and the best ensemble model achieved R 2 = 0.241, P < 0.001. Overall, these results demonstrate that out-of-sample associations between chronic motor outcomes and data-driven imaging features, particularly when lesion data is represented in terms of structural disconnection, are stronger than associations between chronic motor outcomes and theory-based biomarkers. However, combining both theory-based and data-driven models provides the most robust associations
Increasing upper limb training intensity in chronic stroke using embodied virtual reality: a pilot study.
Technology-mediated neurorehabilitation is suggested to enhance training intensity and therefore functional gains. Here, we used a novel virtual reality (VR) system for task-specific upper extremity training after stroke. The system offers interactive exercises integrating motor priming techniques and embodied visuomotor feedback. In this pilot study, we examined (i) rehabilitation dose and training intensity, (ii) functional improvements, and (iii) safety and tolerance when exposed to intensive VR rehabilitation.
Ten outpatient stroke survivors with chronic (>6Â months) upper extremity paresis participated in a ten-session VR-based upper limb rehabilitation program (2 sessions/week).
All participants completed all sessions of the treatment. In total, they received a median of 403Â min of upper limb therapy, with 290Â min of effective training. Within that time, participants performed a median of 4713 goal-directed movements. Importantly, training intensity increased progressively across sessions from 13.2 to 17.3 movements per minute. Clinical measures show that despite being in the chronic phase, where recovery potential is thought to be limited, participants showed a median improvement rate of 5.3% in motor function (Fugl-Meyer Assessment for Upper Extremity; FMA-UE) post intervention compared to baseline, and of 15.4% at one-month follow-up. For three of them, this improvement was clinically significant. A significant improvement in shoulder active range of motion (AROM) was also observed at follow-up. Participants reported very low levels of pain, stress and fatigue following each session of training, indicating that the intensive VR intervention was well tolerated. No severe adverse events were reported. All participants expressed their interest in continuing the intervention at the hospital or even at home, suggesting high levels of adherence and motivation for the provided intervention.
This pilot study showed how a dedicated VR system could deliver high rehabilitation doses and, importantly, intensive training in chronic stroke survivors. FMA-UE and AROM results suggest that task-specific VR training may be beneficial for further functional recovery both in the chronic stage of stroke. Longitudinal studies with higher doses and sample sizes are required to confirm the therapy effectiveness.
This trial was retrospectively registered at ClinicalTrials.gov database (registration number NCT03094650 ) on 14 March 2017
Chronic Stroke Sensorimotor Impairment Is Related to Smaller Hippocampal Volumes: An ENIGMA Analysis
Background.
Persistent sensorimotor impairments after stroke can negatively impact quality of life. The hippocampus is vulnerable to poststroke secondary degeneration and is involved in sensorimotor behavior but has not been widely studied within the context of poststroke upperâlimb sensorimotor impairment. We investigated associations between nonâlesioned hippocampal volume and upper limb sensorimotor impairment in people with chronic stroke, hypothesizing that smaller ipsilesional hippocampal volumes would be associated with greater sensorimotor impairment.
Methods and Results.
Crossâsectional T1âweighted magnetic resonance images of the brain were pooled from 357 participants with chronic stroke from 18 research cohorts of the ENIGMA (Enhancing NeuoImaging Genetics through MetaâAnalysis) Stroke Recovery Working Group. Sensorimotor impairment was estimated from the FMAâUE (FuglâMeyer Assessment of Upper Extremity). Robust mixedâeffects linear models were used to test associations between poststroke sensorimotor impairment and hippocampal volumes (ipsilesional and contralesional separately; Bonferroniâcorrected, P<0.025), controlling for age, sex, lesion volume, and lesioned hemisphere. In exploratory analyses, we tested for a sensorimotor impairment and sex interaction and relationships between lesion volume, sensorimotor damage, and hippocampal volume. Greater sensorimotor impairment was significantly associated with ipsilesional (P=0.005; ÎČ=0.16) but not contralesional (P=0.96; ÎČ=0.003) hippocampal volume, independent of lesion volume and other covariates (P=0.001; ÎČ=0.26). Women showed progressively worsening sensorimotor impairment with smaller ipsilesional (P=0.008; ÎČ=â0.26) and contralesional (P=0.006; ÎČ=â0.27) hippocampal volumes compared with men. Hippocampal volume was associated with lesion size (P<0.001; ÎČ=â0.21) and extent of sensorimotor damage (P=0.003; ÎČ=â0.15).
Conclusions.
The present study identifies novel associations between chronic poststroke sensorimotor impairment and ipsilesional hippocampal volume that are not caused by lesion size and may be stronger in women.S.-L.L. is supported by NIH K01 HD091283; NIH R01 NS115845. A.B. and M.S.K. are supported by National Health and Medical Research Council (NHMRC) GNT1020526, GNT1045617 (A.B.), GNT1094974, and Heart Foundation Future Leader Fellowship 100784 (A.B.). P.M.T. is supported by NIH U54 EB020403. L.A.B. is supported by the Canadian Institutes of Health Research (CIHR). C.M.B. is supported by NIH R21 HD067906. W.D.B. is supported by the Heath Research Council of New Zealand. J.M.C. is supported by NIH R00HD091375. A.B.C. is supported by NIH R01NS076348-01, Hospital Israelita Albert Einstein 2250-14, CNPq/305568/2016-7. A.N.D. is supported by funding provided by the Texas Legislature to the Lone Star Stroke Clinical Trial Network. Its contents are solely the responsibility of the authors and do not necessarily represent the of ficial views of the Government of the United States or the State of Texas. N.E.-B. is supported by Australian Research Council NIH DE180100893. W.F. is sup ported by NIH P20 GM109040. F.G. is supported by Wellcome Trust (093957). B.H. is funded by and NHMRC fellowship (1125054). S.A.K is supported by NIH P20 HD109040. F.B. is supported by Italian Ministry of Health, RC 20, 21. N.S. is supported by NIH R21NS120274. N.J.S. is supported by NIH/National Institute of General Medical Sciences (NIGMS) 2P20GM109040-06, U54-GM104941. S.R.S. is supported by European Research Council (ERC) (NGBMI, 759370). G.S. is supported by Italian Ministry of Health RC 18-19-20-21A. M.T. is sup ported by National Institute of Neurological Disorders and Stroke (NINDS) R01 NS110696. G.T.T. is supported by Temple University sub-award of NIH R24 âNHLBI (Dr Mickey Selzer) Center for Experimental Neurorehabilitation Training. N.J.S. is funded by NIH/National Institute of Child Health and Human Development (NICHD) 1R01HD094731-01A1
Transport architectures for an evolving Internet
Thesis: Ph. D. in Computer Science, Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2014.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.69Cataloged from student-submitted PDF version of thesis.Includes bibliographical references (pages 87-91).In the Internet architecture, transport protocols are the glue between an application's needs and the network's abilities. But as the Internet has evolved over the last 30 years, the implicit assumptions of these protocols have held less and less well. This can cause poor performance on newer networks--cellular networks, datacenters--and makes it challenging to roll out networking technologies that break markedly with the past. Working with collaborators at MIT, I have built two systems that explore an objective-driven, computer-generated approach to protocol design. My thesis is that making protocols a function of stated assumptions and objectives can improve application performance and free network technologies to evolve. Sprout, a transport protocol designed for videoconferencing over cellular networks, uses probabilistic inference to forecast network congestion in advance. On commercial cellular networks, Sprout gives 2-to-4 times the throughput and 7-to-9 times less delay than Skype, Apple Facetime, and Google Hangouts. This work led to Remy, a tool that programmatically generates protocols for an uncertain multi-agent network. Remy's computer-generated algorithms can achieve higher performance and greater fairness than some sophisticated human-designed schemes, including ones that put intelligence inside the network. The Remy tool can then be used to probe the difficulty of the congestion control problem itself--how easy is it to "learn" a network protocol to achieve desired goals, given a necessarily imperfect model of the networks where it ultimately will be deployed? We found weak evidence of a tradeoff between the breadth of the operating range of a computer-generated protocol and its performance, but also that a single computer-generated protocol was able to outperform existing schemes over a thousand-fold range of link rates.by Keith Winstein.Ph. D. in Computer Scienc