45 research outputs found

    Uncertainty in United States coastal wetland greenhouse gas inventorying

    Get PDF
    © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Environmental Research Letters 13 (2018): 115005, doi:10.1088/1748-9326/aae157.Coastal wetlands store carbon dioxide (CO2) and emit CO2 and methane (CH4) making them an important part of greenhouse gas (GHG) inventorying. In the contiguous United States (CONUS), a coastal wetland inventory was recently calculated by combining maps of wetland type and change with soil, biomass, and CH4 flux data from a literature review. We assess uncertainty in this developing carbon monitoring system to quantify confidence in the inventory process itself and to prioritize future research. We provide a value-added analysis by defining types and scales of uncertainty for assumptions, burial and emissions datasets, and wetland maps, simulating 10 000 iterations of a simplified version of the inventory, and performing a sensitivity analysis. Coastal wetlands were likely a source of net-CO2-equivalent (CO2e) emissions from 2006–2011. Although stable estuarine wetlands were likely a CO2e sink, this effect was counteracted by catastrophic soil losses in the Gulf Coast, and CH4 emissions from tidal freshwater wetlands. The direction and magnitude of total CONUS CO2e flux were most sensitive to uncertainty in emissions and burial data, and assumptions about how to calculate the inventory. Critical data uncertainties included CH4 emissions for stable freshwater wetlands and carbon burial rates for all coastal wetlands. Critical assumptions included the average depth of soil affected by erosion events, the method used to convert CH4 fluxes to CO2e, and the fraction of carbon lost to the atmosphere following an erosion event. The inventory was relatively insensitive to mapping uncertainties. Future versions could be improved by collecting additional data, especially the depth affected by loss events, and by better mapping salinity and inundation gradients relevant to key GHG fluxes. Social Media Abstract: US coastal wetlands were a recent and uncertain source of greenhouse gasses because of CH4 and erosion.Financial support was provided primarily by NASA Carbon Monitoring Systems (NNH14AY67I) and the USGS Land Carbon Program, with additional support from The Smithsonian Institution, The Coastal Carbon Research Coordination Network (DEB-1655622), and NOAA Grant: NA16NMF4630103

    Representing the function and sensitivity of coastal interfaces in earth system models

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ward, N. D., Megonigal, J. P., Bond-Lamberty, B., Bailey, V. L., Butman, D., Canuel, E. A., Diefenderfer, H., Ganju, N. K., Goni, M. A., Graham, E. B., Hopkinson, C. S., Khangaonkar, T., Langley, J. A., McDowell, N. G., Myers-Pigg, A. N., Neumann, R. B., Osburn, C. L., Price, R. M., Rowland, J., Sengupta, A., Simard, M., Thornton, P. E., Tzortziou, M., Vargas, R., Weisenhorn, P. B., & Windham-Myers, L. Representing the function and sensitivity of coastal interfaces in earth system models. Nature Communications, 11(1), (2020): 2458, doi:10.1038/s41467-020-16236-2.Between the land and ocean, diverse coastal ecosystems transform, store, and transport material. Across these interfaces, the dynamic exchange of energy and matter is driven by hydrological and hydrodynamic processes such as river and groundwater discharge, tides, waves, and storms. These dynamics regulate ecosystem functions and Earth’s climate, yet global models lack representation of coastal processes and related feedbacks, impeding their predictions of coastal and global responses to change. Here, we assess existing coastal monitoring networks and regional models, existing challenges in these efforts, and recommend a path towards development of global models that more robustly reflect the coastal interface.Funding for this work was provided by Pacific Northwest National Laboratory (PNNL) Laboratory Directed Research & Development (LDRD) as part of the Predicting Ecosystem Resilience through Multiscale Integrative Science (PREMIS) Initiative. PNNL is operated by Battelle for the U.S. Department of Energy under Contract DE-AC05-76RL01830. Additional support to J.P.M. was provided by the NSF-LTREB program (DEB-0950080, DEB-1457100, DEB-1557009), DOE-TES Program (DE-SC0008339), and the Smithsonian Institution. This manuscript was motivated by discussions held by co-authors during a three-day workshop at PNNL in Richland, WA: The System for Terrestrial Aquatic Research (STAR) Workshop: Terrestrial-Aquatic Research in Coastal Systems. The authors thank PNNL artist Nathan Johnson for preparing the figures in this manuscript and Terry Clark, Dr. Charlette Geffen, and Dr. Nancy Hess for their aid in organizing the STAR workshop. The authors thank all workshop participants not listed as authors for their valuable insight: Lihini Aluwihare (contributed to biogeochemistry discussions and development of concept for Fig. 3), Gautam Bisht (contributed to modeling discussion), Emmett Duffy (contributed to observational network discussions), Yilin Fang (contributed to modeling discussion), Jeremy Jones (contributed to biogeochemistry discussions), Roser Matamala (contributed to biogeochemistry discussions), James Morris (contributed to biogeochemistry discussions), Robert Twilley (contributed to biogeochemistry discussions), and Jesse Vance (contributed to observational network discussions). A full report on the workshop discussions can be found at https://www.pnnl.gov/publications/star-workshop-terrestrial-aquatic-research-coastal-systems

    The Coastal Carbon Library and Atlas: open source soil data and tools supporting blue carbon research and policy

    Get PDF
    Quantifying carbon fluxes into and out of coastal soils is critical to meeting greenhouse gas reduction and coastal resiliency goals. Numerous ‘blue carbon’ studies have generated, or benefitted from, synthetic datasets. However, the community those efforts inspired does not have a centralized, standardized database of disaggregated data used to estimate carbon stocks and fluxes. In this paper, we describe a data structure designed to standardize data reporting, maximize reuse, and maintain a chain of credit from synthesis to original source. We introduce version 1.0.0. of the Coastal Carbon Library, a global database of 6723 soil profiles representing blue carbon‐storing systems including marshes, mangroves, tidal freshwater forests, and seagrasses. We also present the Coastal Carbon Atlas, an R‐shiny application that can be used to visualize, query, and download portions of the Coastal Carbon Library. The majority (4815) of entries in the database can be used for carbon stock assessments without the need for interpolating missing soil variables, 533 are available for estimating carbon burial rate, and 326 are useful for fitting dynamic soil formation models. Organic matter density significantly varied by habitat with tidal freshwater forests having the highest density, and seagrasses having the lowest. Future work could involve expansion of the synthesis to include more deep stock assessments, increasing the representation of data outside of the U.S., and increasing the amount of data available for mangroves and seagrasses, especially carbon burial rate data. We present proposed best practices for blue carbon data including an emphasis on disaggregation, data publication, dataset documentation, and use of standardized vocabulary and templates whenever appropriate. To conclude, the Coastal Carbon Library and Atlas serve as a general example of a grassroots F.A.I.R. (Findable, Accessible, Interoperable, and Reusable) data effort demonstrating how data producers can coordinate to develop tools relevant to policy and decision‐making.Department of Energy, Grant/AwardNumber: COMPASS-FME; Division of Environmental Biology, Grant/AwardNumber: DEB-1655622; National Oceanicand Atmospheric Administration, Grant/Award Number: NA22OAR4310148; National Science Foundation, Grant/Award Number: DGE-1842473; Pew Charitable TrustsGlobal Change Biolog

    Typha (Cattail) Invasion in North American Wetlands: Biology, Regional Problems, Impacts, Ecosystem Services, and Management

    Get PDF
    Typha is an iconic wetland plant found worldwide. Hybridization and anthropogenic disturbances have resulted in large increases in Typha abundance in wetland ecosystems throughout North America at a cost to native floral and faunal biodiversity. As demonstrated by three regional case studies, Typha is capable of rapidly colonizing habitats and forming monodominant vegetation stands due to traits such as robust size, rapid growth rate, and rhizomatic expansion. Increased nutrient inputs into wetlands and altered hydrologic regimes are among the principal anthropogenic drivers of Typha invasion. Typha is associated with a wide range of negative ecological impacts to wetland and agricultural systems, but also is linked with a variety of ecosystem services such as bioremediation and provisioning of biomass, as well as an assortment of traditional cultural uses. Numerous physical, chemical, and hydrologic control methods are used to manage invasive Typha, but results are inconsistent and multiple methods and repeated treatments often are required. While this review focuses on invasive Typha in North America, the literature cited comes from research on Typha and other invasive species from around the world. As such, many of the underlying concepts in this review are relevant to invasive species in other wetland ecosystems worldwide

    Substantial hysteresis in emergent temperature sensitivity of global wetland CH4 emissions

    Get PDF
    Wetland methane (CH4) emissions (FCH4) are important in global carbon budgets and climate change assessments. Currently, FCH4 projections rely on prescribed static temperature sensitivity that varies among biogeochemical models. Meta-analyses have proposed a consistent FCH4 temperature dependence across spatial scales for use in models; however, site-level studies demonstrate that FCH4 are often controlled by factors beyond temperature. Here, we evaluate the relationship between FCH4 and temperature using observations from the FLUXNET-CH4 database. Measurements collected across the globe show substantial seasonal hysteresis between FCH4 and temperature, suggesting larger FCH4 sensitivity to temperature later in the frost-free season (about 77% of site-years). Results derived from a machine-learning model and several regression models highlight the importance of representing the large spatial and temporal variability within site-years and ecosystem types. Mechanistic advancements in biogeochemical model parameterization and detailed measurements in factors modulating CH4 production are thus needed to improve global CH4 budget assessments. Wetland methane emissions contribute to global warming, and are oversimplified in climate models. Here the authors use eddy covariance measurements from 48 global sites to demonstrate seasonal hysteresis in methane-temperature relationships and suggest the importance of microbial processes.Peer reviewe

    Upscaling Wetland Methane Emissions From the FLUXNET-CH4 Eddy Covariance Network (UpCH4 v1.0):Model Development, Network Assessment, and Budget Comparison

    Get PDF
    Wetlands are responsible for 20%–31% of global methane (CH4) emissions and account for a large source of uncertainty in the global CH4 budget. Data-driven upscaling of CH4 fluxes from eddy covariance measurements can provide new and independent bottom-up estimates of wetland CH4 emissions. Here, we develop a six-predictor random forest upscaling model (UpCH4), trained on 119 site-years of eddy covariance CH4 flux data from 43 freshwater wetland sites in the FLUXNET-CH4 Community Product. Network patterns in site-level annual means and mean seasonal cycles of CH4 fluxes were reproduced accurately in tundra, boreal, and temperate regions (Nash-Sutcliffe Efficiency ∌0.52–0.63 and 0.53). UpCH4 estimated annual global wetland CH4 emissions of 146 ± 43 TgCH4 y−1 for 2001–2018 which agrees closely with current bottom-up land surface models (102–181 TgCH4 y−1) and overlaps with top-down atmospheric inversion models (155–200 TgCH4 y−1). However, UpCH4 diverged from both types of models in the spatial pattern and seasonal dynamics of tropical wetland emissions. We conclude that upscaling of eddy covariance CH4 fluxes has the potential to produce realistic extra-tropical wetland CH4 emissions estimates which will improve with more flux data. To reduce uncertainty in upscaled estimates, researchers could prioritize new wetland flux sites along humid-to-arid tropical climate gradients, from major rainforest basins (Congo, Amazon, and SE Asia), into monsoon (Bangladesh and India) and savannah regions (African Sahel) and be paired with improved knowledge of wetland extent seasonal dynamics in these regions. The monthly wetland methane products gridded at 0.25° from UpCH4 are available via ORNL DAAC (https://doi.org/10.3334/ORNLDAAC/2253).</p

    Upscaling Wetland Methane Emissions From the FLUXNET-CH4 Eddy Covariance Network (UpCH4 v1.0): Model Development, Network Assessment, and Budget Comparison

    Get PDF
    Wetlands are responsible for 20%-31% of global methane (CH4) emissions and account for a large source of uncertainty in the global CH4 budget. Data-driven upscaling of CH4 fluxes from eddy covariance measurements can provide new and independent bottom-up estimates of wetland CH4 emissions. Here, we develop a six-predictor random forest upscaling model (UpCH4), trained on 119 site-years of eddy covariance CH4 flux data from 43 freshwater wetland sites in the FLUXNET-CH4 Community Product. Network patterns in site-level annual means and mean seasonal cycles of CH4 fluxes were reproduced accurately in tundra, boreal, and temperate regions (Nash-Sutcliffe Efficiency similar to 0.52-0.63 and 0.53). UpCH(4) estimated annual global wetland CH4 emissions of 146 +/- 43 TgCH4 y(-1) for 2001-2018 which agrees closely with current bottom-up land surface models (102-181 TgCH4 y(-1)) and overlaps with top-down atmospheric inversion models (155-200 TgCH4 y -1). However, UpCH4 diverged from both types of models in the spatial pattern and seasonal dynamics of tropical wetland emissions. We conclude that upscaling of eddy covariance CH4 fluxes has the potential to produce realistic extra-tropical wetland CH4 emissions estimates which will improve with more flux data. To reduce uncertainty in upscaled estimates, researchers could prioritize new wetland flux sites along humid-to-arid tropical climate gradients, from major rainforest basins (Congo, Amazon, and SE Asia), into monsoon (Bangladesh and India) and savannah regions (African Sahel) and be paired with improved knowledge of wetland extent seasonal dynamics in these regions. The monthly wetland methane products gridded at 0.25 degrees from UpCH4 are available via ORNL DAAC (https://doi.org/10.3334/ ORNLDAAC/2253).Plain Language Summary Wetlands account for a large share of global methane emissions to the atmosphere, but current estimates vary widely in magnitude (similar to 30% uncertainty on annual global emissions) and spatial distribution, with diverging predictions for tropical rice growing (e.g., Bengal basin), rainforest (e.g., Amazon basin), and floodplain savannah (e.g., Sudd) regions. Wetland methane model estimates could be improved by increased use of land surface methane flux data. Upscaling approaches use flux data collected across globally distributed measurement networks in a machine learning framework to extrapolate fluxes in space and time. Here, we train and evaluate a methane upscaling model (UpCH4) and use it to generate monthly, globally gridded wetland methane emissions estimates for 2001-2018. The UpCH4 model uses only six predictor variables among which temperature is dominant. Global annual methane emissions estimates and associated uncertainty ranges from upscaling fall within state-of-the-art model ensemble estimates from the Global Carbon Project (GCP) methane budget. In some tropical regions, the spatial pattern of UpCH4 emissions diverged from GCP predictions, however, inclusion of flux measurements from additional ground-based sites, together with refined maps of tropical wetlands extent, could reduce these prediction uncertainties

    Identifying dominant environmental predictors of freshwater wetland methane fluxes across diurnal to seasonal time scales

    Get PDF
    While wetlands are the largest natural source of methane (CH4) to the atmosphere, they represent a large source of uncertainty in the global CH4 budget due to the complex biogeochemical controls on CH4 dynamics. Here we present, to our knowledge, the first multi-site synthesis of how predictors of CH4 fluxes (FCH4) in freshwater wetlands vary across wetland types at diel, multiday (synoptic), and seasonal time scales. We used several statistical approaches (correlation analysis, generalized additive modeling, mutual information, and random forests) in a wavelet-based multi-resolution framework to assess the importance of environmental predictors, nonlinearities and lags on FCH4 across 23 eddy covariance sites. Seasonally, soil and air temperature were dominant predictors of FCH4 at sites with smaller seasonal variation in water table depth (WTD). In contrast, WTD was the dominant predictor for wetlands with smaller variations in temperature (e.g., seasonal tropical/subtropical wetlands). Changes in seasonal FCH4 lagged fluctuations in WTD by similar to 17 +/- 11 days, and lagged air and soil temperature by median values of 8 +/- 16 and 5 +/- 15 days, respectively. Temperature and WTD were also dominant predictors at the multiday scale. Atmospheric pressure (PA) was another important multiday scale predictor for peat-dominated sites, with drops in PA coinciding with synchronous releases of CH4. At the diel scale, synchronous relationships with latent heat flux and vapor pressure deficit suggest that physical processes controlling evaporation and boundary layer mixing exert similar controls on CH4 volatilization, and suggest the influence of pressurized ventilation in aerenchymatous vegetation. In addition, 1- to 4-h lagged relationships with ecosystem photosynthesis indicate recent carbon substrates, such as root exudates, may also control FCH4. By addressing issues of scale, asynchrony, and nonlinearity, this work improves understanding of the predictors and timing of wetland FCH4 that can inform future studies and models, and help constrain wetland CH4 emissions.Peer reviewe
    corecore