92 research outputs found

    Terminal DNA structure and ATP influence binding parameters of the DNA-dependent protein kinase at an early step prior to DNA synapsis

    Get PDF
    The DNA-dependent protein kinase catalytic subunit (DNA-PKcs) regulates the non-homologous end-joining pathway of DNA double-strand break repair in mammalian cells. The ability of DNA-PKcs to sense and respond to different terminal DNA structures is postulated to be important for its regulatory function. It is unclear whether discrimination occurs at the time of formation of the initial protein–DNA complex or later, at the time of formation of a paired, or synaptic complex between opposing DNA ends. To gain further insight into the mechanism of regulation, we characterized the binding of DNA-PKcs to immobilized DNA fragments that cannot undergo synapsis. Results showed that DNA-PKcs strongly discriminates between different terminal structures at the time of initial complex formation. Although Ku protein stabilizes DNA-PKcs binding overall, it is not required for discrimination between terminal structures. Base mispairing, temperature and the presence of an interstrand linkage influence the stability of the initial complex in a manner that suggests a requirement for DNA unwinding, reminiscent of the ‘open complex’ model of RNA polymerase–promoter DNA interaction. ATP and a nonhydrolyzable ATP analog also influence the stability of the DNA-PKcs•DNA complex, apparently by an allosteric mechanism that does not require DNA-PKcs autophosphorylation

    Editorial: Nucleic Acids Research and Nucleic Acid Therapeutics

    Get PDF
    Nucleic Acids Research has recently commissioned the publication of a series of Survey and Summary articles that encapsulate the current ‘state of the art’ surrounding the creation, function, behavior and optimization of nucleic acid molecules that may be adopted for clinical applications

    Measurement of the time structure of FLASH beams using prompt gamma rays and secondary neutrons as surrogates

    Full text link
    We aim to investigate the feasibility of online monitoring of irradiation time (IRT) and scan time for FLASH radiotherapy using a pixelated semiconductor detector. Measurements of the time structure of FLASH irradiations were performed using fast, pixelated spectral detectors, AdvaPIX-TPX3 and Minipix-TPX3. The latter has a fraction of its sensor coated with a neutron sensitive material. With little or no dead time and an ability to resolve events that are closely spaced in time (tens of ns), both detectors can accurately determine IRTs as long as pile-ups are avoided. To avoid pile-ups, we placed the detectors beyond the Bragg peak or at a large scattering angle. We acquired prompt gamma rays and secondary neutrons and calculated IRTs based on timestamps of the first (beam-on) and the last (beam-off) charged species. We also measured scan times in x, y, and diagonal directions. We performed these measurements for a single spot, a small animal field, a patient field, and a ridge filter optimized field to demonstrate in vivo online monitoring of IRT. All measurements were compared to vendor log files. Differences between measurements and log files for a single spot, a small animal field, and a patient field were within 1%, 0.3% and 1%, respectively. In vivo monitoring of IRTs was accurate within 0.1% for AdvaPIX-TPX3 and within 6.1% for Minipix-TPX3. The scan times in x, y, and diagonal directions were 4.0, 3.4, and 4.0 ms, respectively. Overall, the AdvaPIX-TPX3 can measure FLASH IRTs within 1% accuracy, indicating that prompt gamma rays are a good surrogate for primary protons. The Minipix-TPX3 showed a higher discrepancy, suggesting a need for further investigation. The scan times (3.4 \pm 0.05 ms) in the 60-mm distance of y-direction were less than (4.0 \pm 0.06 ms) in the 24-mm distance of x-direction, confirming the much faster scanning speed of the Y magnets than that of X.Comment: 11 pages, 5 figure

    Large-scale analysis of protein expression changes in human keratinocytes immortalized by human papilloma virus type 16 E6 and E7 oncogenes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Infection with high-risk type human papilloma viruses (HPVs) is associated with cervical carcinomas and with a subset of head and neck squamous cell carcinomas. Viral E6 and E7 oncogenes cooperate to achieve cell immortalization by a mechanism that is not yet fully understood. Here, human keratinocytes were immortalized by long-term expression of HPV type 16 E6 or E7 oncoproteins, or both. Proteomic profiling was used to compare expression levels for 741 discrete protein features.</p> <p>Results</p> <p>Six replicate measurements were performed for each group using two-dimensional difference gel electrophoresis (2D-DIGE). The median within-group coefficient of variation was 19–21%. Significance of between-group differences was tested based on Significance Analysis of Microarray and fold change. Expression of 170 (23%) of the protein features changed significantly in immortalized cells compared to primary keratinocytes. Most of these changes were qualitatively similar in cells immortalized by E6, E7, or E6/7 expression, indicating convergence on a common phenotype, but fifteen proteins (~2%) were outliers in this regulatory pattern. Ten demonstrated opposite regulation in E6- and E7-expressing cells, including the cell cycle regulator p16<sup>INK4a</sup>; the carbohydrate binding protein Galectin-7; two differentially migrating forms of the intermediate filament protein Cytokeratin-7; HSPA1A (Hsp70-1); and five unidentified proteins. Five others had a pattern of expression that suggested cooperativity between the co-expressed oncoproteins. Two of these were identified as forms of the small heat shock protein HSPB1 (Hsp27).</p> <p>Conclusion</p> <p>This large-scale analysis provides a framework for understanding the cooperation between E6 and E7 oncoproteins in HPV-driven carcinogenesis.</p

    Quantifiable Biomarkers of Normal Aging in the Japanese Medaka Fish (Oryzias latipes)

    Get PDF
    BACKGROUND: Small laboratory fish share many anatomical and histological characteristics with other vertebrates, yet can be maintained in large numbers at low cost for lifetime studies. Here we characterize biomarkers associated with normal aging in the Japanese medaka (Oryzias latipes), a species that has been widely used in toxicology studies and has potential utility as a model organism for experimental aging research. PRINCIPAL FINDINGS: The median lifespan of medaka was approximately 22 months under laboratory conditions. We performed quantitative histological analysis of tissues from age-grouped individuals representing young adults (6 months old), mature adults (16 months old), and adults that had survived beyond the median lifespan (24 months). Livers of 24-month old individuals showed extensive morphologic changes, including spongiosis hepatis, steatosis, ballooning degeneration, inflammation, and nuclear pyknosis. There were also phagolysosomes, vacuoles, and residual bodies in parenchymal cells and congestion of sinusoidal vessels. Livers of aged individuals were characterized by increases in lipofuscin deposits and in the number of TUNEL-positive apoptotic cells. Some of these degenerative characteristics were seen, to a lesser extent, in the livers of 16-month old individuals, but not in 6-month old individuals. The basal layer of the dermis showed an age-dependent decline in the number of dividing cells and an increase in senescence-associated β-galactosidase. The hearts of aged individuals were characterized by fibrosis and lipofuscin deposition. There was also a loss of pigmented cells from the retinal epithelium. By contrast, age-associated changes were not apparent in skeletal muscle, the ocular lens, or the brain. SIGNIFICANCE: The results provide a set of markers that can be used to trace the process of normal tissue aging in medaka and to evaluate the effect of environmental stressors

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy
    • …
    corecore