16 research outputs found

    Sex-biased gene expression and dosage compensation on the Artemia franciscana Z-chromosome

    Get PDF
    Males and females of Artemia franciscana, a crustacean commonly used in the aquarium trade, are highly dimorphic. Sex is determined by a pair of ZW chromosomes, but the nature and extent of differentiation of these chromosomes is unknown. Here, we characterize the Z chromosome by detecting genomic regions that show lower genomic coverage in female than in male samples, and regions that harbor an excess of female-specific SNPs. We detect many Z-specific genes, which no longer have homologs on the W, but also Z-linked genes that appear to have diverged very recently from their existing W-linked homolog. We assess patterns of male and female expression in two tissues with extensive morphological dimorphism, gonads, and heads. In agreement with their morphology, sex-biased expression is common in both tissues. Interestingly, the Z chromosome is not enriched for sex-biased genes, and seems to in fact have a mechanism of dosage compensation that leads to equal expression in males and in females. Both of these patterns are contrary to most ZW systems studied so far, making A. franciscana an excellent model for investigating the interplay between the evolution of sexual dimorphism and dosage compensation, as well as Z chromosome evolution in general

    Structure and decay of a proto-Y region in Tilapia, Oreochromis niloticus

    Get PDF
    Funding for Open Access provided by the UMD Libraries Open Access Publishing Fund.Sex-determination genes drive the evolution of adjacent chromosomal regions. Sexually antagonistic selection favors the accumulation of inversions that reduce recombination in regions adjacent to the sex-determination gene. Once established, the clonal inheritance of sex-linked inversions leads to the accumulation of deleterious alleles, repetitive elements and a gradual decay of sex-linked genes. This in turn creates selective pressures for the evolution of mechanisms that compensate for the unequal dosage of gene expression. Here we use whole genome sequencing to characterize the structure of a young sex chromosome and quantify sex-specific gene expression in the developing gonad. We found an 8.8 Mb block of strong differentiation between males and females that corresponds to the location of a previously mapped sex-determiner on linkage group 1 of Oreochromis niloticus. Putatively disruptive mutations are found in many of the genes within this region. We also found a significant female-bias in the expression of genes within the block of differentiation compared to those outside the block of differentiation. Eight candidate sex-determination genes were identified within this region. This study demonstrates a block of differentiation on linkage group 1, suggestive of an 8.8 Mb inversion encompassing the sex-determining locus. The enrichment of female-biased gene expression inside the proposed inversion suggests incomplete dosage compensation. This study helps establish a model for studying the early-to-intermediate stages of sex chromosome evolution.https://doi.org/10.1186/1471-2164-15-97

    Comparative analysis of a sex chromosome from the blackchin tilapia, Sarotherodon melanotheron

    Get PDF
    Background Inversions and other structural polymorphisms often reduce the rate of recombination between sex chromosomes, making it impossible to fine map sex-determination loci using traditional genetic mapping techniques. Here we compare distantly related species of tilapia that each segregate an XY system of sex-determination on linkage group 1. We use whole genome sequencing to identify shared sex-patterned polymorphisms, which are candidates for the ancestral sex-determination mutation. Results We found that Sarotherodon melanotheron segregates an XY system on LG1 in the same region identified in Oreochromis niloticus. Both species have higher densities of sex-patterned SNPs, as well as elevated number of ancestral copy number variants in this region when compared to the rest of the genome, but the pattern of differentiation along LG1 differs between species. The number of sex-patterned SNPs shared by the two species is small, but larger than expected by chance, suggesting that a novel Y-chromosome arose just before the divergence of the two species. We identified a shared sex-patterned SNP that alters a Gata4 binding site near Wilms tumor protein that might be responsible for sex-determination. Conclusions Shared sex-patterned SNPs, insertions and deletions suggest an ancestral sex-determination system that is common to both S. melanotheron and O. niloticus. Functional analyses are needed to evaluate shared SNPs near candidate genes that might play a role in sex-determination of these species. Interspecific variation in the sex chromosomes of tilapia species provides an excellent model system for understanding the evolution of vertebrate sex chromosomes. (Résumé d'auteur

    Integrated analysis of miRNA and mRNA expression profiles in tilapia gonads at an early stage of sex differentiation

    Get PDF
    MicroRNAs (miRNAs) represent a second regulatory network that has important effects on gene expression and protein translation during biological process. However, the possible role of miRNAs in the early stages of fish sex differentiation is not well understood. In this study, we carried an integrated analysis of miRNA and mRNA expression profiles to explore their possibly regulatory patterns at the critical stage of sex differentiation in tilapia. We identified 279 pre-miRNA genes in tilapia genome, which were highly conserved in other fish species. Based on small RNA library sequencing, we identified 635 mature miRNAs in tilapia gonads, in which 62 and 49 miRNAs showed higher expression in XX and XY gonads, respectively. The predicted targets of these sex-biased miRNAs (e.g., miR-9, miR-21, miR-30a, miR-96, miR-200b, miR-212 and miR-7977) included genes encoding key enzymes in steroidogenic pathways (Cyp11a1, Hsd3b, Cyp19a1a, Hsd11b) and key molecules involved in vertebrate sex differentiation (Foxl2, Amh, Star1, Sf1, Dmrt1, and Gsdf). These genes also showed sex-biased expression in tilapia gonads at 5 dah. Some miRNAs (e.g., miR-96 and miR-737) targeted multiple genes involved in steroid synthesis, suggesting a complex miRNA regulatory network during early sex differentiation in this fish. The sequence and expression patterns of most miRNAs in tilapia are conserved in fishes, indicating the basic functions of vertebrate miRNAs might share a common evolutionary origin. This comprehensive analysis of miRNA and mRNA at the early stage of molecular sex differentiation in tilapia XX and XY gonads lead to the discovery of differentially expressed miRNAs and their putative targets, which will facilitate studies of the regulatory network of molecular sex determination and differentiation in fishes.https://doi.org/10.1186/s12864-016-2636-

    A high quality assembly of the Nile Tilapia (Oreochromis niloticus) genome reveals the structure of two sex determination regions

    Get PDF
    Background  Tilapias are the second most farmed fishes in the world and a sustainable source of food. Like many other fish, tilapias are sexually dimorphic and sex is a commercially important trait in these fish. In this study, we developed a significantly improved assembly of the tilapia genome using the latest genome sequencing methods and show how it improves the characterization of two sex determination regions in two tilapia species.  Results  A homozygous clonal XX female Nile tilapia (Oreochromis niloticus) was sequenced to 44X coverage using Pacific Biosciences (PacBio) SMRT sequencing. Dozens of candidate de novo assemblies were generated and an optimal assembly (contig NG50 of 3.3Mbp) was selected using principal component analysis of likelihood scores calculated from several paired-end sequencing libraries. Comparison of the new assembly to the previous O. niloticus genome assembly reveals that recently duplicated portions of the genome are now well represented. The overall number of genes in the new assembly increased by 27.3%, including a 67% increase in pseudogenes. The new tilapia genome assembly correctly represents two recentvasagene duplication events that have been verified with BAC sequencing. At total of 146Mbp of additional transposable element sequence are now assembled, a large proportion of which are recent insertions. Large centromeric satellite repeats are assembled and annotated in cichlid fish for the first time. Finally, the new assembly identifies the long-range structure of both a ~9Mbp XY sex determination region on LG1 in O. niloticus, and a ~50Mbp WZ sex determination region on LG3 in the related species O. aureus.  Conclusions  This study highlights the use of long read sequencing to correctly assemble recent duplications and to characterize repeat-filled regions of the genome. The study serves as an example of the need for high quality genome assemblies and provides a framework for identifying sex determining genes in tilapia and related fish species

    Understanding Student Perceptions and Practices for Pre-Lecture Content Reading in the Genetics Classroom

    No full text
    Many faculty members assign textbook readings prior to their traditional lectures. In this study, we assessed students’ level of class preparedness and surveyed their textbook reading practices weekly along with entrance and exit surveys concerning their attitudes toward reading the textbook. We report that pre-lecture reading is a significant variable in explaining pre-lecture preparedness as well as exam scores. We also report the reasons participants cited for not reading more of the textbook. We hope this analysis will allow educators to have a better understanding of the level of pre-lecture reading that is occurring in a traditional lecture-style course and the impacts of pre-lecture reading on student success

    Unusual Diversity of Sex Chromosomes in African Cichlid Fishes

    Get PDF
    African cichlids display a remarkable assortment of jaw morphologies, pigmentation patterns, and mating behaviors. In addition to this previously documented diversity, recent studies have documented a rich diversity of sex chromosomes within these fishes. Here we review the known sex-determination network within vertebrates, and the extraordinary number of sex chromosomes systems segregating in African cichlids. We also propose a model for understanding the unusual number of sex chromosome systems within this clade

    Disagreement in FST estimators: A case study from sex chromosomes

    Get PDF
    Sewall Wright developed FST for describing population differentiation and it has since been extended to many novel applications, including the detection of homomorphic sex chromosomes. However, there has been confusion regarding the expected estimate of FST for a fixed difference between the X‐ and Y‐chromosome when comparing males and females. Here, we attempt to resolve this confusion by contrasting two common FST estimators and explain why they yield different estimates when applied to the case of sex chromosomes. We show that this difference is true for many allele frequencies, but the situation characterized by fixed differences between the X‐ and Y‐chromosome is among the most extreme. To avoid additional confusion, we recommend that all authors using FST clearly state which estimator of FST their work uses
    corecore