75 research outputs found

    Semiquantitative activity-based detection of JWH-018, a synthetic cannabinoid receptor agonist, in oral fluid after vaping

    Get PDF
    The rapid proliferation of new synthetic cannabinoid receptor agonists (SCRAs) has initiated considerable interest in the development of so-called “untargeted” screening strategies. One of these new screening technologies involves the activity-based detection of SCRAs. In this study, we evaluated whether (synthetic) cannabinoid activity can be detected in oral fluid (OF) and, if so, whether it correlates with SCRA concentrations. OF was collected at several time points in a placebo-controlled JWH-018 administration study. The outcome of the cell-based cannabinoid reporter system, which monitored the cannabinoid receptor activation, was compared to the quantitative data for JWH-018, obtained via a validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. A total of 175 OF samples were collected and analyzed via both methods. The cannabinoid reporter assay correctly classified the vast majority of the samples as either negative (<0.25 ng/mL; 74/75 = 99%) or having low (0.25−1.5 ng/mL; 16/16 = 100% and 1.5−10 ng/mL; 37/41 = 90%), mid (10−100 ng/mL; 23/25 = 92%) or high (>100 ng/mL; 16/18 = 89%) JWH-018 concentrations. Passing−Bablok regression analysis yielded a good linear correlation, with no proportional difference between both methods (slope 0.97; 95% confidence interval 0.86−1.14) and only a small systematic difference. This is the first study to demonstrate the applicability of an untargeted, activity-based approach for SCRA detection in OF. Additionally, the outcome of the cannabinoid reporter assay was compared to the gold standard (LC-MS/MS), showing a good correlation between both methods, indicating that the cannabinoid reporter assay can be used for an estimation of drug concentrations

    Analysis of biofilm-nanoparticles interaction using microscopy (fluorescence, MEB, STEM, MET, EDS)

    No full text
    International audienceAmong biofilm's properties, the ability to interact with/catch pollutants can have applications in bioremediation. Here, biofilm interactions with metals (as iron nanoparticles (NanoFer 25S)) was evaluated using various approaches in microscopy. For this, biofilm growth, sampling, labelling and treatment were developed for each type of microscopy to access the surface or inside of the biofilm, biofilm composition, and metal location. Multispecies biofilms were grown on sand or in PVC tubes inoculated with aquifer water spiked with a nutritive solution to enhance denitrification, and then put in contact with nanoparticles. According to the targeted microscopy, biofilms were (i) sampled as flocs or attached biofilm, (ii) submitted to cells (DAPI) and/or lectins (PNA and ConA coupled to FITC or Au nanoparticles) labelling, and (iii) prepared for observation (fixation, cross-section, freezing…). Fluorescent microscopy revealed that nanoparticles were embedded in the biofilm structure as 0.5-5µm size aggregates. SEM observations also showed NP aggregates closed to microorganisms but it was not possible to conclude a potential interaction between nanoparticles and the biological membranes. STEM-in-SEM analysis showed NP aggregates could enter inside the biofilm over a depth of 7-11µm. Moreover, microorganisms were circled by an EPS ring that prevented the direct interaction between NP and membrane. TEM(STEM)/EDS revealed that NP aggregates were co-localized with lectins suggesting a potential role of exopolysaccharides in NP embedding. The combination of several approaches in microscopy is thus a good tool to better understandi and characterize biofilm/pollutant interaction

    Quantification of phosphatidylethanol 16:0/18:1, 18:1/18:1, and 16:0/16:0 in venous blood and venous and capillary dried blood spots from patients in alcohol withdrawal and control volunteers

    Get PDF
    Phosphatidylethanol species (PEths) are promising biomarkers of alcohol consumption. Here, we report on the set-up, validation, and application of a novel UHPLC-ESI-MS/MS method for the quantification of PEth 16:0/18:1, PEth 18:1/18:1, and PEth 16:0/16:0 in whole blood (30 mu L) and in venous (V, 30 mu L) or capillary (C, 3 punches (3 mm)) dried blood spots (DBS). The methods were linear from 10 (LLOQ) to 2000 ng/mL for PEth 16:0/18:1, from 10 (LLOQ) to 1940 ng/mL for PEth 18:1/18:1, and from 19 (LLOQ) to 3872 ng/mL for PEth 16:0/16:0. Extraction efficiencies were higher than 55 % (RSD < 18 %) and matrix effects compensated for by IS were between 77 and 125 % (RSD < 10 %). Accuracy, repeatability, and intermediate precision fulfilled acceptance criteria (bias and RSD below 13 %). Validity of the procedure for determination of PEth 16:0/18:1 in blood was demonstrated by the successful participation in a proficiency test. The quantification of PEths in C-DBS was not significantly influenced by the hematocrit, punch localization, or spot volume. The stability of PEths in V-DBS stored at room temperature was demonstrated up to 6 months. The method was applied to authentic samples (whole blood, V-DBS, and C-DBS) from 50 inpatients in alcohol withdrawal and 50 control volunteers. Applying a cut-off value to detect inpatients at 221 ng/mL for PEth 16:0/18:1 provided no false positive results and a good sensitivity (86 %). Comparison of quantitative results (Bland-Altman plot, Passing-Bablok regression, and Wilcoxon signed rank test) revealed that V-DBS and C-DBS were valid alternatives to venous blood for the detection of alcohol consumption

    Quantitation of phosphatidylethanol in dried blood after volumetric absorptive microsampling

    Get PDF
    Background: Stimulated by the increased recognition of phosphatidylethanol (PEth) as sensitive direct marker of alcohol intake, the Ghent University's Laboratory of Toxicology and the National Institute of Criminalistics and Criminology combined their efforts to develop a quantitative method. To facilitate implementation the focus was on the use of a sampling technique which allows quick and easy blood collection, without the need of dedicated personnel at any place/any time. In the meantime the cooperation of the two labs should also allow to initiate a Belgian network of laboratories capable of quantifying PEth. Methods: Dried blood microsamples were collected via volumetric absorptive microsampling (VAMS). PEth 16:0/ 18:1 was quantified after liquid-liquid extraction using two independent isotope dilution - liquid chromatography - tandem mass spectrometry methods. A systematic review of the entire process at both sites was performed before the final method comparison using samples from 59 routine toxicology cases collected within a one-year time interval. Results: Initial differences between both laboratories were solved by focusing on important methodological aspects: (i) trueness verification of the calibration protocol focusing on the primary material, preparation of the stock solutions and adequate equilibration of calibrators and QCs, and (ii) verification of comparability of results obtained with different m/z transitions. Several of these aspects could only be verified by critically assessing spiked and native samples. After a final validation good average comparability of the two methods was observed. The average bias was -0.4%, with 85% of the differences within 20%. Moreover, the methods proved to be reproducible and robust within a one-year time interval. Conclusion: This study is the first to develop a quantitative volumetric absorptive microsampling based method for PEth measurements, in addition it is the first to perform a systematic comparison of PEth measurements between two laboratories. From the discussion on the encountered pitfalls it is clear that also on a global scale, more efforts are needed to improve interlaboratory agreement

    Mineralogical and isotopic record of biotic and abiotic diagenesis of the Callovian-Oxfordian clayey formation of Bure (France)

    Get PDF
    International audienceThe Callovian-Oxfordian (COx) clayey unit is being studied in the Eastern part of the Paris Basin at depths between 400 and 500 m depth to assess of its suitability for nuclear waste disposal. The present study combines new mineralogical and isotopic data to describe the sedimentary history of the COx unit. Petrologic study provided evidence of the following diagenetic mineral sequence: (1) framboidal pyrite and micritic calcite, (2) iron-rich euhedral carbonates (ankerite, sideroplesite) and glauconite (3) limpid calcite and dolomite and celestite infilling residual porosity in bioclasts and cracks, (4) chalcedony, (5) quartz/calcite. Pyrite in bioturbations shows a wide range of δ34S (−38‰ to +34.5‰), providing evidence of bacterial sulphate reduction processes in changing sedimentation conditions. The most negative values (−38‰ to −22‰), measured in the lower part of the COx unit indicate precipitation of pyrite in a marine environment with a continuous sulphate supply. The most positive pyrite δ34S values (−14‰ up to +34.5‰) in the upper part of the COx unit indicate pyrite precipitation in a closed system. Celestite δ34S values reflect the last evolutionary stage of the system when bacterial activity ended; however its deposition cannot be possible without sulphate supply due to carbonate bioclast dissolution. The 87Sr/86Sr ratio of celestite (0.706872-0.707040) is consistent with deposition from Jurassic marine-derived waters. Carbon and oxygen isotopic compositions of bulk calcite and dolomite are consistent with marine carbonates. Siderite, only present in the maximum clay zone, has chemical composition and δ18O consistent with a marine environment. Its δ13C is however lower than those of marine carbonates, suggesting a contribution of 13C-depleted carbon from degradation of organic matter. δ18O values of diagenetic chalcedony range between +27‰ and +31‰, suggesting precipitation from marine-derived pore waters. Late calcite crosscutting a vein filled with chalcedony and celestite, and late euhedral quartz in a limestone from the top of the formation have lower δ18O values (not, vert, similar+19‰), suggesting that they precipitated from meteoric fluids, isotopically close to present-day pore waters of the formation. Finally, the study illustrates the transition from very active, biotic diagenesis to abiotic diagenesis. This transition appears to be driven by compaction of the sediment, which inhibited movement of bacterial cells by reduction of porosity and pore sizes, rather than a lack of inorganic carbon or sulphates

    Analytical performance of eight enzymatic assays for ethanol in serum evaluated by data from the Belgian external quality assessment scheme

    Full text link
    Abstract Objectives Fast and reliable ethanol assays analysis are used in a clinical context for patients suspected of ethanol intoxication. Mostly, automated systems using an enzymatic reaction based on ethanol dehydrogenase are used. The manuscript focusses on the evaluation of the performance of these assays. Methods Data included 30 serum samples used in the Belgian EQA scheme from 2019 to 2021 and concentrations ranged from 0.13 to 3.70 g/L. A regression line between target concentrations and reported values was calculated to evaluate outliers, bias, variability and measurement uncertainty. Results A total of 1,611 results were taken into account. Bias was the highest for Alinity c over the whole concentration range and the lowest for Vitros for low concentrations and Cobas 8000 using the c702 module for high concentrations. The Architect and Cobas c501/c502 systems showed the lowest variability over the whole concentration range. Highest variability was observed for Cobas 8000 using the 702 module, Thermo Scientific and Alinity c. Cobas 8000 using the c702 module showed the highest measurement uncertainty for lower concentrations. For higher concentrations, Alinity c, Thermo Scientific and Vitros were the methods with the highest measurement uncertainty. Conclusions The bias of the enzymatic techniques is nearly negligible for all methods except Alinity c. Variability differs strongly between measurement procedures. This study shows that the Alinity c has a worse measurement uncertainty than other systems for concentrations above 0.5 g/L. Overall, we found the differences in measurement uncertainty to be mainly influenced by the differences in variability

    Altered energy partitioning across terrestrial ecosystems in the European drought year 2018

    Get PDF
    Drought and heat events, such as the 2018 European drought, interact with the exchange of energy between the land surface and the atmosphere, potentially affecting albedo, sensible and latent heat fluxes, as well as CO(2)exchange. Each of these quantities may aggravate or mitigate the drought, heat, their side effects on productivity, water scarcity and global warming. We used measurements of 56 eddy covariance sites across Europe to examine the response of fluxes to extreme drought prevailing most of the year 2018 and how the response differed across various ecosystem types (forests, grasslands, croplands and peatlands). Each component of the surface radiation and energy balance observed in 2018 was compared to available data per site during a reference period 2004-2017. Based on anomalies in precipitation and reference evapotranspiration, we classified 46 sites as drought affected. These received on average 9% more solar radiation and released 32% more sensible heat to the atmosphere compared to the mean of the reference period. In general, drought decreased net CO(2)uptake by 17.8%, but did not significantly change net evapotranspiration. The response of these fluxes differed characteristically between ecosystems; in particular, the general increase in the evaporative index was strongest in peatlands and weakest in croplands. This article is part of the theme issue 'Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'
    corecore