4,754 research outputs found
Self heating and nonlinear current-voltage characteristics in bilayer graphene
We demonstrate by experiments and numerical simulations that the
low-temperature current-voltage characteristics in diffusive bilayer graphene
(BLG) exhibit a strong superlinearity at finite bias voltages. The
superlinearity is weakly dependent on doping and on the length of the graphene
sample. This effect can be understood as a result of Joule heating. It is
stronger in BLG than in monolayer graphene (MLG), since the conductivity of BLG
is more sensitive to temperature due to the higher density of electronic states
at the Dirac point.Comment: 9 pages, 7 figures, REVTeX 4.
Block copolymer self-assembly for nanophotonics
The ability to control and modulate the interaction of light with matter is crucial to achieve desired optical properties including reflection, transmission, and selective polarization. Photonic materials rely upon precise control over the composition and morphology to establish periodic interactions with light on the wavelength and sub-wavelength length scales. Supramolecular assembly provides a natural solution allowing the encoding of a desired 3D architecture into the chemical building blocks and assembly conditions. The compatibility with solution processing and low-overhead manufacturing is a significant advantage over more complex approaches such as lithography or colloidal assembly. Here we review recent advances on photonic architectures derived from block copolymers and highlight the influence and complexity of processing pathways. Notable examples that have emerged from this unique synthesis platform include Bragg reflectors, antireflective coatings, and chiral metamaterials. We further predict expanded photonic capabilities and limits of these approaches in light of future developments of the field
Shot noise and conductivity at high bias in bilayer graphene: Signatures of electron-optical phonon coupling
We have studied electronic conductivity and shot noise of bilayer graphene
(BLG) sheets at high bias voltages and low bath temperature K. As a
function of bias, we find initially an increase of the differential
conductivity, which we attribute to self-heating. At higher bias, the
conductivity saturates and even decreases due to backscattering from optical
phonons. The electron-phonon interactions are also responsible for the decay of
the Fano factor at bias voltages V. The high bias electronic
temperature has been calculated from shot noise measurements, and it goes up to
K at V. Using the theoretical temperature dependence of BLG
conductivity, we extract an effective electron-optical phonon scattering time
. In a 230 nm long BLG sample of mobility
cmVs, we find that decreases with increasing
voltage and is close to the charged impurity scattering time fs
at V.Comment: 7 pages, 7 figures. Extended version of the high bias part of version
1. The low bias part is discussed in arXiv:1102.065
Generation of bipartite spin entanglement via spin-independent scattering
We consider the bipartite spin entanglement between two identical fermions
generated in spin-independent scattering. We show how the spatial degrees of
freedom act as ancillas for the creation of entanglement to a degree that
depends on the scattering angle, . The number of Slater determinants
generated in the process is greater than 1, corresponding to genuine quantum
correlations between the identical fermions. The maximal entanglement
attainable of 1 ebit is reached at . We also analyze a simple
dependent Bell's inequality, which is violated for
. This phenomenon is unrelated to the symmetrization
postulate but does not appear for unequal particles.Comment: 5 pages and 3 figures. Accepted in PR
Quantum key distribution with realistic states: photon-number statistics in the photon-number splitting attack
Quantum key distribution can be performed with practical signal sources such
as weak coherent pulses. One example of such a scheme is the Bennett-Brassard
protocol that can be implemented via polarization of the signals, or equivalent
signals. It turns out that the most powerful tool at the disposition of an
eavesdropper is the photon-number splitting attack. We show that this attack
can be extended in the relevant parameter regime such as to preserve the
Poissonian photon number distribution of the combination of the signal source
and the lossy channel.Comment: 4 page
Efficient single-photon emission from electrically driven InP quantum dots epitaxially grown on Si(001)
The heteroepitaxy of III-V semiconductors on silicon is a promising approach
for making silicon a photonic platform for on-chip optical interconnects and
quantum optical applications. Monolithic integration of both material systems
is a long-time challenge, since different material properties lead to high
defect densities in the epitaxial layers. In recent years, nanostructures
however have shown to be suitable for successfully realising light emitters on
silicon, taking advantage of their geometry. Facet edges and sidewalls can
minimise or eliminate the formation of dislocations, and due to the reduced
contact area, nanostructures are little affected by dislocation networks. Here
we demonstrate the potential of indium phosphide quantum dots as efficient
light emitters on CMOS-compatible silicon substrates, with luminescence
characteristics comparable to mature devices realised on III-V substrates. For
the first time, electrically driven single-photon emission on silicon is
presented, meeting the wavelength range of silicon avalanche photo diodes'
highest detection efficiency
Coin Tossing is Strictly Weaker Than Bit Commitment
We define cryptographic assumptions applicable to two mistrustful parties who
each control two or more separate secure sites between which special relativity
guarantees a time lapse in communication. We show that, under these
assumptions, unconditionally secure coin tossing can be carried out by
exchanges of classical information. We show also, following Mayers, Lo and
Chau, that unconditionally secure bit commitment cannot be carried out by
finitely many exchanges of classical or quantum information. Finally we show
that, under standard cryptographic assumptions, coin tossing is strictly weaker
than bit commitment. That is, no secure classical or quantum bit commitment
protocol can be built from a finite number of invocations of a secure coin
tossing black box together with finitely many additional information exchanges.Comment: Final version; to appear in Phys. Rev. Let
- …
