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Self-heating and nonlinear current-voltage characteristics in bilayer graphene
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We demonstrate by experiments and numerical simulations that the low-temperature current-voltage
characteristics in diffusive bilayer graphene (BLG) exhibit a strong superlinearity at finite bias voltages.
The superlinearity is weakly dependent on doping and on the length of the graphene sample. This effect can
be understood as a result of Joule heating. It is stronger in BLG than in monolayer graphene (MLG), since the
conductivity of BLG is more sensitive to temperature due to the higher density of electronic states at the Dirac
point.

DOI: 10.1103/PhysRevB.83.205421 PACS number(s): 73.63.−b, 73.23.−b, 73.50.Fq, 72.80.Vp

I. INTRODUCTION

Two-dimensional graphene in its monolayer and bilayer
forms can exhibit rather different electronic characteristics.1,2

In monolayer graphene (MLG) the valence and conductance
bands touch each other at two inequivalent Dirac points in
the Brillouin zone, around which the bands are linear. Thus
the density of states (DOS) also vanishes linearly around
these points, where the Fermi energy of charge-neutral
graphene is located. In the most common (Bernal) stacking
of bilayer graphene (BLG) the two layers are electronically
coupled such that the two linear bands of the individual layers
mix to form four bands, the lower of which are parabolic
around the Dirac points. In this case the DOS around these
points is approximately constant.

This difference gives rise to different charge screening and
transport properties for the two types of graphene. In particular,
the temperature dependencies for the conductivity of diffusive
MLG and BLG around the charge-neutrality point (CNP)
differ.3–8 In both cases, thermal excitation of quasiparticles
from the valence to the conduction band (i.e., thermal creation
of electron-like and hole-like charge carriers) increases the
conductivity with temperature, as is typical for semiconductors
and insulators. However, due to differences in the DOS, in
MLG the conductivity at CNP grows only quadratically with
temperature, while in BLG it increases linearly.5

In this paper we show how this difference of MLG and
BLG is reflected in the current-voltage [I (V )] characteristics
of diffusive graphene. For MLG it is known that the I (V )
characteristics tend to be linear at low bias voltage V and have
a tendency to saturate at higher voltages due to scattering
of electrons from optical phonons.9,10 Close to CNP the
I (V ) at small V can become superlinear as a result of
Zener-Klein tunneling between the valence and conduction
bands, especially in low-mobility samples.11 By measuring
the I (V ) curves of both MLG and BLG on a SiO2 substrate
in a two-terminal configuration, we show that in BLG the
I (V ) characteristics have a much stronger tendency for
superlinearity at V � 0.1 V, which we associate with an
increase of the conductivity due to self-heating (Joule heating).
This effect is only weakly dependent on the level of doping
and on the length of the sample. We confirm this interpretation
with numerical simulations using a semiclassical model based
on Boltzmann theory for a diffusive two-dimensional (2D)

system in quasiequilibrium. The model takes into account
electron scattering from charged impurities, the band-bending
effects due to charge doping by the metallic source and drain
electrodes,12–16 uniform impurity doping, and nonuniform
doping by a gate electrode. For MLG the Joule-heating-related
nonlinearity is found to be weak, which is consistent with
previous experiments and calculations.9–11

The paper is organized as follows. In Sec. II we introduce
the theoretical model, Sec. III describes the experimental
results and compares them to theory, and in Sec. IV we
end with some discussion of other mechanisms for current
nonlinearities. Details of the model are given in the appendixes.
In Appendix A solution of the electrostatic part of the problem
in terms of a Green’s function is detailed. Appendix B
discusses the modeling of the impurity scattering and gives
expressions for the charge density and the transport coefficients
for MLG and BLG. Finally, in Appendix C we discuss analytic
semiclassical results for the temperature dependence of the
conductance of a p-n junction, which can form in the graphene
close to the metallic electrodes.

II. THEORETICAL MODEL

The model geometry that we consider (see Fig. 1) is a
simplification of typical experimental geometries. It consists of
a two-dimensional (quasi-one-dimensional) channel coupled
to two transport electrodes (l and r) as well as a back
gate electrode (bg). In this geometry we solve for the
electrostatic potential together with transport equations for
the quasiparticles in the channel.

Our semiclassical transport theory assumes a diffusive
2D electron system in quasiequilibrium,17 such that the
quasiparticle distribution is described by a local chemical
potential μ(x) and a local temperature T (x). A third unknown
field is the electrostatic potential ϕ(x) in the channel (y = d),
which shifts the energy ED(x) of the local Dirac point such
that ED(x) = −eϕ(x). The three fields ϕ(x), μ(x), and T (x)
are solved from the equations

ϕ(x) =
∫ L/2

−L/2
dξG(x,d; ξ,d)e[n(ξ ) − ndop]/ε

+
∑

X=l,r,bg

ψX(x,d)φX,
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FIG. 1. (Color online) The rectangular geometry considered in
the model. l and r depict the left and right (source and drain)
electrodes, while bg is a back gate electrode. All three are held at
different constant potentials, φl , φr , and φbg , respectively. The 2D
channel, of length L, is at a distance d from the back gate. For
simplicity the regions below and above the channel are assumed to
be occupied by the same dielectric medium with permittivity ε.

[σ (x)μ′(x)/e + γ (x)T ′(x)]′ = 0,

− [α(x)μ′(x)/e + κ(x)T ′(x)]′ = PJ (x). (1)

Here prime denotes the x derivative, G is the Green’s function
of the Laplace operator, ψX(x,y) is the “characteristic func-
tion” for electrode X (see Appendix A), and ε = εrε0, where εr

and ε0 are the relative and vacuum permittivities. Further, n(x)
is the two-dimensional charge density in units of the electron
charge −e (Appendix B), and ndop is a phenomenological
doping density that describes the doping effect by impurities,
which is assumed to be constant. (Thus, charge puddles18,19 are
not described—see below for discussion.) The factors σ (x) and
κ(x) are the charge and thermal conductivities, respectively,
while α(x) and γ (x) are the thermoelectric transport coeffi-
cients, satisfying α(x) = T (x)γ (x). These factors are inversely
proportional to the impurity density nimp, which is taken to be
another constant parameter independent of ndop (Appendix B).
The quantities n(x), σ (x), κ(x), γ (x), and α(x) all depend on
ϕ(x). Finally, PJ (x) = j (x)[μ′(x)/e] is the Joule power per
area, with j (x) = σ (x)μ′(x)/e + γ (x)T ′(x) being the electric
current density, which is conserved, j (x) ≡ j . The total current
through a system of finite width W � L,d is I = jW .

The boundary conditions at x = ±L/2 are chosen to be

φl = −V, φr = 0,

μ(−L/2) = eV + μeq, μ(+L/2) = μeq, (2)

T (−L/2) = T (+L/2) = T0,

which correspond to a voltage bias V , assuming negligible con-
tact resistance, the right-hand electrode to remain grounded,
and both electrodes to remain at the bath temperature T0. The
finite equilibrium chemical potential μeq �= 0 describes the
effects of the work function mismatch and the resulting charge
transfer between the graphene and the electrodes, with μeq > 0
(μeq < 0) leading to n-type (p-type) doping.14

The first of Eqs. (1) is the Poisson equation written as
an integral equation at y = d. The second and third describe
current conservation and heat balance, respectively. Note that
in order to keep the model simple, we do not include electron-
phonon coupling and thus the Joule power is dissipated only
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FIG. 2. (Color online) Results for BLG [(a), (b)] and MLG [(c),
(d)] with parameter L = 350 nm, μeq = 0.05 eV, ndop = 10.0 ×
1015 m−2, εr = 4.0, d = 210 nm. Additionally for BLG nimp = 7.0 ×
1015 m−2, and for MLG nimp = 2.5 × 1015 m−2. [(a), (c)] Linear-
response conductivity σ (V = 0) = (L/W )(dI/dV )V =0 at three tem-
peratures and [(b), (d)] the corresponding finite-V differential
conductivity σ (V ) = (L/W )(dI/dV ) for T0 = 4 K at indicated gate
voltages φbg .

via diffusion.17 This should be reasonable first approximation
at bias voltages V well below optical phonon energies.20

In Fig. 2 we show typical results obtained from the model
for BLG and MLG with parameters obtained from the fit to
(the gate dependence of) our BLG experiments in Sec. III. It is
to be noted that the aspect ratio L/d = 1.7 is far too small for
a simplified parallel-plate capacitor model to work properly
in the geometry of Fig. 1, and a full numerical solution of
Eqs. (1) is needed. The fields obtained as their solutions are
very nonuniform, as shown for BLG in Fig. 3.

The upper panels of Fig. 2 are for the case of BLG. Fig-
ure 2(a) shows the gate dependence of the linear-response con-
ductivity σ (V = 0) = [L−1

∫ L/2
−L/2 ρ(x ′)dx ′]−1, where ρ(x) =

1/σ (x) is the resistivity. Due to finite positive doping density
(ndop > 0) the point of minimal conductivity (the apparent
“CNP”) is shifted to φbg = φbg,min ≈ −13 V and as result
of the lead-doping effect (μeq > 0), the gate dependence is
asymmetrical around the CNP.12 Since the lead-doping is of
n type, at φbg > φbg,min the BLG is of n type everywhere.
However, for φbg < φbg,min two p-n junctions appear,12 and
the BLG becomes of n-p-n type. While for φbg > φbg,min

the dependence on temperature is relatively weak, for φbg ≈
φbg,min it is roughly linear: σ (V = 0) ∝ T (Ref. 5). For φbg �
φbg,min, where the p-n junctions dominate the resistance, it
can be shown that approximately σ (V = 0) ∝ −1/ ln(T ) as
T → 0 (Appendix C). However, the theory is valid only when
all parts of graphene remain far from the local CNP. This
is because charge puddles, quantum-mechanical effects (see
Appendix C), and a possible gap in the BLG spectrum are not
taken into account. Thus, we mainly concentrate on the gate
voltages φbg > φbg,min.
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FIG. 3. (Color online) Bias dependence of the field profiles
for n-type BLG at gate voltage φbg = 8 V: (a) conductivity σ ,
(b) temperature T , (c) charge density n, (d) chemical potential μ

and the local Dirac point ED (higher and lower curves, respectively).
Solid, dashed, and dash-dotted curves are for V = −0.1, 0.0, and
0.1 V, respectively. Dotted lines show additionally σ , n, and ED

in equilibrium at φbg = 0; here n(x = 0) ≈ ndop. The parameters
are as in Fig. 2, and we have defined the units σ0 = CBLGE0 and
n0 = (ε/d)E0/e

2, where E0 = 1 eV (for CBLG; see Appendix B).

Figure 2(b) shows the differential conductivity σ (V ) =
(L/W )(dI/dV ) = L(dj/dV ) as a function of V for a few gate
voltages φbg > φbg,min at low bath temperature. Note that the
σ (V ) curves are nearly symmetric [σ (−V ) ≈ σ (V )], although
there are small deviations, which are due to the asymmetrical
choice of the boundary conditions and the presence of the
gate electrode. The increase of σ (V ) at finite V signifies a
superlinear contribution to the I (V ) curve: I (V ) ≈ G1V +
G2V

2 (V > 0) with G2 > 0. This superlinearity is strongest
close to the CNP, where the conductivity of BLG is most
sensitive to temperature [see Eq. (B5)]. In fact, the increase
of the conductivity with voltage [see Fig. 3(a)] is entirely due
to heating, which leads to maximal temperatures of T (x) ∼
300 K at V = 0.1 V [Fig. 3(b)]. The charge density n(x),
for example, remains almost independent of V [Fig. 3(c)].
Indeed, the density is of the form n(x) = n̂[μ(x) − ED(x)]
(Appendix B), and μ(x) − ED(x) remains close to its value
at V = 0 everywhere [Fig. 3(d)]. Thus the bias voltage
“gates” the graphene very little. The dotted lines in Fig. 3
additionally show the results at equilibrium, with φbg = 0.
The fast transients close to the electrodes are due to the doping
by the leads. This doping is not restricted only to the region
on the order of a screening length ∼1 nm (Appendix B) from
the leads, but is actually long ranged.14,21

Figures 2(c) and 2(d) show equivalent results for MLG,
where the impurity density nimp has been chosen so that the
conductivities are of a similar magnitude as for BLG. The
temperature dependence of σ (V = 0) for φbg � φbg,min is now
clearly even weaker. For φbg ≈ φbg,min it is quadratic, σ (V =
0) ∝ T 2 (Ref. 5), and for φbg � φbg,min linear, σ (V = 0) ∝ T

(Appendix C). Correspondingly, the increase of the σ (V ) at

φbg > φbg,min is much weaker. This is consistent with the fact
that the I (V ) curves measured for MLG are typically linear or
even sublinear, except close to CNP in low-mobility samples,
where Zener-Klein tunneling is of importance.11 In the case of
MLG the “gating” effect of the bias voltage is somewhat larger
due to the longer screening length, but remains also weak.

Here we have concentrated on short samples, with L/d ∼ 1.
In the considered model geometry the gate dopes the graphene
quite weakly at distances on the order of d from the ends.
Additionally, the center of the graphene heats more than the
ends. Therefore at φbg > φbg,min the ends tend to dominate the
resistance [Fig. 3(a)]. When L � d, the parallel-plate limit is
approached, where n(x) and σ (x) become uniform, with μ(x)
and ED(x) roughly linear. One may then simplify the equations
Eqs. (1) by taking α = γ = 0 and using the Wiedemann-Franz
law κ = LT σ , where L = (π2/3)(kB/e)2, and assuming a
constant σ . The temperature profile is thus approximated with

T (x) =
√

T 2
0 + [1/4 − (x/L)2]V 2/L, which scales simply

with V . The heating effect on the conductivity σ (V ) therefore
depends relatively weakly on the length of the sample.

We do not pursue further simplifications or extensions of
the model here, but it should be noted that the thermoelectric
coefficients α and γ are not of great importance for the
current nonlinearity. However, under some conditions the
strong temperature gradient at the ends can also cause the
conductivity to decrease at small bias voltage. A very weak
sign of this is seen in the flat region of the φbg = 18 V curve in
Fig. 2(b). We also note that our tests with some simple models
for charge puddles can reduce the width of this flat region,
making nonlinearity stronger also at high gate voltages.

III. EXPERIMENTS

We have measured seven bilayer graphene samples in
a two-lead configuration and found qualitatively the same
transport properties for each of them. Here we focus on the
results obtained on two samples from the same BLG sheet
having lengths L = 350 nm and L = 950 nm, and widths W =
900 nm and 1550 nm, respectively (Fig. 4). The samples were
contacted using Ti/Al/Ti sandwich structures with thicknesses
10 nm / 70 nm / 5 nm (10 nm of Ti is the contact layer).
Three 0.6 μm wide contacts were patterned using e-beam
lithography. The strongly doped Si substrate was used as a
back gate, separated by 270 nm of SiO2 from the sample.

FIG. 4. (Color online) (a) Optical picture of two bilayer graphene
samples of lengths L = 350 nm and L = 950 nm. The BLG flake has
been colored in red to enhance its visibility. (b) Raman spectrum of
the corresponding bilayer graphene sheet.22
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FIG. 5. (Color online) Typical I (V ) curves for MLG and BLG at
the CNP at 4.2 K. The dashed line has a slope equal to the conductivity
4.5e2/h of both samples at V = 0. For MLG the I (V ) curve is linear.
In BLG it is superlinear, which we associate with the Joule heating
of the sample.

The I (V ) curve of our 0.95 × 1.55 μm2 sample at 4.2 K is
illustrated in Fig. 5 together with the I (V ) in a typical MLG
sample. While the MLG result is linear,9,10 the BLG curve
exhibits clearly superlinear behavior at small drain-source
voltage V ; the nonlinearity in BLG depends relatively weakly
on the gate voltage φbg but is largest near the CNP. The nonlin-
ear behavior can be observed more clearly in Fig. 6(a) which
displays the differential conductivity σ (V ) = (L/W )(dI/dV )
of the long and short samples at a few values of φbg . It
is seen that also the length dependence of the nonlinearity
at bias voltages below V ≈ 0.1 V is weak. This supports
its interpretation as a heating effect: As mentioned above,
the temperature should scale with V and not, for example, the
electric field V/L. Note, furthermore, that the σ (V ) curves are
very symmetrical.

Figure 6(b) shows the full gate voltage dependence of the
zero-bias conductivity of the short and long samples. In both

FIG. 6. (Color online) The left-hand panel (a) shows the experi-
mentally measured differential conductivity σ (V ) at finite V for both
the short (dashed line) and the long (solid line) BLG sample at three
pairs of gate voltages that are chosen so that the minima at V = 0
V for both samples coincide. The right-hand panel (b) shows the
corresponding zero-bias conductivity σ (V = 0) vs the gate voltage
φbg for both samples. The temperature is T0 = 4.2 K.

samples, the minimal conductivity is located in the negative
gate voltage region around −10 V. The minimum zero-bias
conductivities are roughly 3.8 and 4.7 e2/h for the short and
long sample, respectively. These are close to the value ∼4 e2/h

typically found for both MLG and BLG.4,23 An asymmetry
between the n-doped and p-doped regions is clearly visible
and is more pronounced for the short sample where the
conductivity is almost constant in the p region. We interpret
this electron-hole asymmetry as a sign of the leads n doping the
graphene,12,14 so that there are p-n junctions present at larger
negative gate voltages. This is consistent with expectations
for Ti/Al electrodes.12,14 In a parallel-plate approximation the
charge density is n ≈ (Cbg/e)(φbg − φbg,min), where Cbg =
1.3 × 10−4 F/m2. Using this we estimate from the slope
of σ (V = 0) vs n > 0 for the long sample the mobility
μm = σ/(en) to be at least 1500 cm2 V−1 s−1. Using this
the mean free path is estimated to be lmfp = √

πnh̄μm/e �
30 nm, and thus the samples are diffusive.

We compare the raw experimental data to the theoretical
results in Fig. 7, where solid and dashed lines are for
experimental and theoretical data, respectively. Figures 7(a)
and 7(b) show the σ (V = 0) vs φbg dependence for the
short and the long sample, respectively. Also experimental
data measured at 77 K and 300 K are shown. It is seen
that the zero-bias conductivity increases slightly from 4 K
to 77 K, and more significantly from 77 K to 300 K. The
conductivity change is strongest near the CNP and also in the
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FIG. 7. (Color online) Experimental results (solid lines) and a
theoretical fit (dashed lines) for a short BLG sample (L = 350 nm)
and a long BLG sample (L = 950 nm). Left-hand panels [(a), (b)]
show the linear response conductivity at T = 300 K (top curve),
77 K, and 4 K (bottom curve), and the right-hand panel (c) shows
the differential conductivity for L = 350 nm at T0 = 4 K and at
gate voltages 8 V (top curve), 3 V, and −5 V (bottom curve). The
parameters used for the theoretical fit are μeq = 0.05 eV, nimp =
7.0 × 1015 m−2, εr = 4.0, d = 210 nm. For the short sample L =
350 nm and ndop = 10.0 × 1015 m−2, while for the long sample L =
950 nm and ndop = 7.0 × 1015 m−2.

205421-4



SELF-HEATING AND NONLINEAR CURRENT-VOLTAGE . . . PHYSICAL REVIEW B 83, 205421 (2011)

p-doped region. Since the theory is expected to work only in
the absence of p-n junctions, the fitting is done only to the
σ (V = 0) vs φbg data [Figs. 7(a) and 7(b)] at φbg > φbg,min,
with μeq > 0. The same parameters are then used for calcu-
lating σ (V ). The σ (V ) data for the short sample are shown
in Fig. 7(c).

The parameters used for the fit are given in the caption
of Fig. 7. The work function mismatch μeq = 0.05 eV is of
the correct sign and order expected for Ti/Al electrodes.14 A
gate distance d = 210 nm is used, which is smaller than the
experimental 270 nm. The smaller d used for the comparison
is reasonable, since in the simplified geometry assumed by the
theoretical model the gate potential is more strongly screened
by the transport electrodes: even for the long sample the par-
allel plate limit is not fully reached.24 It is also notable that the
densities ndop = 7−10 × 1015 m−2 and nimp = 7 × 1015 m−2

are of the same order. This is consistent with our assumption
that all scatterers are charged impurities of the same type
(Appendix B), in which case the simplest theories predict the
two densities to be equal for BLG.5 The magnitudes ndop,
nimp ∼ 1015−1016 m−2 are also in the range expected from
other experiments.4,6

The overall agreement of the theory with the experiment
is good, apart from the large deviations for φbg � φbg,min,
where some parts of the system are close to the CNP. At
these gate voltages the low-temperature theoretical results for
σ (V = 0) tend to fall well below the experimental ones,
whereas at 300 K the opposite is true. In addition to this the
clearest discrepancy is that the self-heating predicted by the
theory is too strong, as shown by the overly steep slope of σ (V )
in Fig. 7(c). Also, the slight decrease of the experimental slope
with voltage is not captured. A proper explanation of these
effects would require considering interactions of the electrons
with phonons, particularly the remote interface phonons of
the SiO2 substrate.17,20 Another clear deviation is that the
theoretical σ (V ) curves for high φbg tend to be flatter close
to V = 0 than in the experiments. [The theoretical results
for the long sample are otherwise similar as in Fig. 7(c), but
even slightly more “flat”.] As suggested in Sec. II, the correct
shape could presumably be reproduced by considering charge
puddles, i.e., a nonuniform impurity density and doping. To
keep the model simple and the number of fitting parameters
small, we have neglected puddles here.

It should be noted the gross features of the results can be
understood simply based on the temperature-dependence of
the local conductivity,5 which may be worked out analytically
[Eq. (B5) below] and the fact that the average temperature
increases roughly linearly with the bias voltage. However, the
precise shape of the nonlinearity is dependent on the various
sources of nonuniformity.

IV. DISCUSSION

The heating effects described above are not the only
possible sources of nonlinearity. As already mentioned, at
high enough bias voltage electron scattering from phonons
tends to reduce the conductivity, which is expected to make
the current-voltage curves at high bias sublinear. This has been
seen in MLG as a tendency for the current to almost saturate.9,10

We also see similar effects in our experiments25 with BLG at
voltages V � 0.1 V.

The possibility of nonlinear I (V )s in graphene at low bias
has also been discussed based on simple arguments involving
the energy dependence of the number of open transport
channels in the Landauer-Büttiker description of the linear-
response conductivity.25–27 Such calculations are problematic
for the prediction of current-voltage characteristics beyond
linear response, however, since they do not consider the role of
the actual voltage profiles.26 Ideally, the electrostatic potential
drop should be calculated self-consistently, as we have done
above.

Other mechanisms for nonlinear (mostly superlinear)
current-voltage responses in graphene have very recently been
discussed by many authors.11,28–33 In particular, Zener-Klein
tunneling in MLG has been shown to give rise to super-
linearities close to CNP.11,28,29 It seems unlikely, however,
that a similar mechanism would be of importance in our
experiments, since the nonlinearity is weakly gate dependent.
Other possibilities for nonlinearities include the presence
of tunnel junctions30 or contact phenomena,31 but we can
disregard them as an explanation of our measurements due
to the weak length dependence of the nonlinear conduc-
tivity σ (V ). Furthermore, nonlinear current-voltage curves
in graphene oxides have been explained with space-charge
limited currents,32 but such effects are likely to be negligible
in metallic graphene, as also supported by the absence of
any bias-doping effects in our simulations. Nonlinearities are
predicted also for vertical transport in misaligned BLG or
few-layer systems.33 However, of all these possibilities the
self-heating scenario presented above seems to be the most
likely explanation of our experimental results.

To summarize, we have shown how Joule heating can
contribute to the shape of the observed current-voltage charac-
teristics of bilayer graphene in the diffusive limit. The heating
is signified by a strong superlinear contribution in I (V ) and
thus a low-bias differential conductivity σ (V ) increasing with
V . Our experimental results and our numerical calculations
are in good overall agreement for bias voltages V � 0.1 V.
The heating effect is much stronger in bilayer graphene than
in monolayer, as can be expected from the differences in their
electronic structures.

Note added in proof. We note that generalizing the model to
allow for separate quasichemical potentials for electrons and
holes34 in the bipolar regime could lead to further nonlinear
effects. Similar experiments and some related modeling were
recently described in Ref. 35, but for much longer samples and
higher biases.
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APPENDIX A: GREEN’S FUNCTION AND
CHARACTERISTIC FUNCTIONS

The Green’s function G(x,y; x ′,y ′) of the Laplace
operator satisfies ∇2G(x,y; x ′,y ′) = δ(x − x ′)δ(y − y ′),

G(x ′,y ′; x,y) = G(x,y; x ′,y ′), and zero boundary conditions
on the electrodes. For the particular geometry under
consideration (Fig. 1) the Green’s function may be found
analytically using conformal mapping techniques and it is

G(x,y; x ′,y ′) = 1

2π
ln

√
(sin x̃ cosh ỹ − sin x̃ ′ cosh ỹ ′)2 + (cos x̃ sinh ỹ − cos x̃ ′ sinh ỹ ′)2

(sin x̃ cosh ỹ − sin x̃ ′ cosh ỹ ′)2 + (cos x̃ sinh ỹ + cos x̃ ′ sinh ỹ ′)2
, (A1)

where x̃ = πx/L, ỹ = πy/L, and so on.
The characteristic function ψX for electrode X is defined

such that it satisfies the Laplace equation ∇2ψX = 0 with the
boundary condition that ψX = 1 on electrode X and ψX = 0
on the other electrodes. Once the Green’s function is known,
the characteristic functions may be easily represented in terms
of it:

ψl(x,y) = −
∫ ∞

0
dy ′ ∂

∂x ′ G(x,y; x ′,y ′)
∣∣
x ′=−L/2 ,

ψr (x,y) =
∫ ∞

0
dy ′ ∂

∂x ′ G(x,y; x ′,y ′)
∣∣
x ′=L/2 , (A2)

ψbg(x,y) = −
∫ L/2

−L/2
dx ′ ∂

∂y ′ G(x,y; x ′,y ′)
∣∣
y ′=0 .

APPENDIX B: CHARGE CONCENTRATION AND
TRANSPORT COEFFICIENTS FOR GRAPHENE

In our semiclassical model the charge density is assumed
to be of the form

n(x) =
∫ ∞

−∞
dEDϕ(E,x){f [E − μ(x),T (x)]

− θ [ED(x) − E]}, (B1)

where f (E,T ) = 1/(eE/kBT + 1) is the Fermi function,
ED(x) = −eϕ(x), and we define Dϕ(E,x) = D[E + eϕ(x)],
where D(E) is the density of states (DOS). Using Eq. (B1)
self consistently in the Poisson equation is essentially the
Thomas-Fermi approximation.14

Assuming a diffusive system with only elastic impurity
scattering the transport coefficients are given by

σ (x) =
∫

dEσϕ(E,x)F [E − μ(x),T (x)],

κ(x) = kB

e2

∫
dEσϕ(E,x)

[E − μ(x)]2

kBT (x)
F [E − μ(x),T (x)],

(B2)

γ (x) = kB

e

∫
dEσϕ(E,x)

E − μ(x)

kBT (x)
F [E − μ(x),T (x)],

with α(x) = T (x)γ (x). Here F (E,T ) = −∂f (E,T )/∂E is the
thermal broadening function, and we define σϕ(E,x) = σ [E +
eϕ(x)], where σ (E) = e2D(E)D(E) is the energy-dependent
Boltzmann conductivity. The quantity D(E) = v2(E)τ (E)/2
the diffusion constant, where v(E) is the group velocity and
τ (E) the transport relaxation time.

It is easy to see by change of the integration variable
that the quantities in Eqs. (B1) and (B4) only depend on
the difference μ(x) − ED(x). Thus below we define the “hat-
ted” quantities with n(x) = n̂[μ(x) − ED(x),T (x)], σ (x) =
σ̂ [μ(x) − ED(x),T (x)], and similarly for the other transport
coefficients.

As a specific model for the impurity scattering we consider
only screened Coulomb impurities, which lead to a linear
dependence of the conductivity on charge density5 for both
BLG and MLG, as observed in most experiments.4 (For
BLG also short-range scattering may be of importance.6) For
simplicity we assume all of the bare impurities to carry a charge
±e and to be at zero distance from the graphene, and perform
an average with respect to their positions.5 For BLG and MLG
some further approximations are made, as explained below.

1. Bilayer graphene

For BLG we assume a purely parabolic and gapless
dispersion E = ±(h̄v0k)2/γ1, where v0 = 106 m/s and γ1 =
0.4 eV. This yields a group velocity v(E) = 2v0

√|E|/γ1 and
a constant DOS D(E) = 1

π

γ1

(h̄v0)2 . Then

n̂(μ,T ) = 1

π

γ1

(h̄v0)2
μ. (B3)

The DOS leads to an inverse Thomas-Fermi screening length
qTF,BLG = 2e2γ1/[4πε(h̄v0)2] ∼ 1 nm−1.

For the charged impurity scattering we use the “complete-
screening” approximation.5 Thus we find τ (E) = 4h̄

π2
γ1

(h̄v0)2
1

nimp
,

where nimp is the average impurity density. This yields

σ (E) = CBLG|E|, CBLG = 8e2γ1

π3h̄3v2
0nimp

. (B4)

Then the transport coefficients are

σ̂ (μ,T ) = CBLG2kBT ln

(
2 cosh

μ

2kBT

)
,

κ̂(μ,T ) = LT CBLG
3

π2
kBT h(μ/kBT ),

(B5)

γ̂ (μ,T ) = CBLG2kBT

{
− μ

kBT
ln

[
2 cosh

(
μ

2kBT

)]

+ Li2(−e−μ/kBT ) − Li2(−eμ/kBT )

}
,
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where L = π2

3
k2
B

e2 is the Lorenz number. Here Li2 is the
dilogarithm function36 and h(a) = h(−a) is defined as

h(a) =
∫ ∞

−∞
|x|(x − a)2

[
− d

dx

1

ex−a + 1

]
dx. (B6)

This function has the limits h(a) ≈ π2

3 2 ln[2 cosh(a/2)], when
|a| � 1, and h(a) ≈ 9ζ (3), when |a| � 1. Using these we
see that the Wiedemann-Franz law κ = LT σ only applies
if |μ| � kBT . We note that the mobility is given by μm =
(CBLG/e)[(h̄v0)2/γ1].

2. Monolayer graphene

For MLG the dispersion relation is E = ±h̄v0k, giving a
constant group velocity v(E) = v0 = 106 m/s, and a density
of states D(E) = 1

π

2|E|
(h̄v0)2 . Then

n̂(μ,T ) = 1

π

2(kBT )2

(h̄v0)2
g(μ/kBT ). (B7)

Here we have defined the function g(a) = Li2(−e−a) −
Li2(−ea) = −g(−a), which has the limits g(a) ≈ a|a|/2
when |a| � 1, and g(a) ≈ 2 ln(2)a when |a| � 1. The inverse
screening length is now qTF,MLG = 4kF e2/(4πεh̄v0), with
kF = |μ|/(h̄v0).

For the impurity scattering we now assume that the
“effective fine-structure constant”3,5 of MLG is small, rs =
qTF,MLG/(4kF ) = e2/(4πεh̄v0) � 1. (For SiO2 εr = 4.0 and
rs ≈ 0.5.) In this way we find τ (E) = 1

nimp

h̄
π2

|E|
(h̄v0)2

1
r2
s
. These

give

σ (E) = CMLG|E|2, CMLG = e2

π3r2
s h̄

3v2
0nimp

. (B8)

The transport coefficients are thus

σ̂ (μ,T ) = CMLG

[
μ2 + π2

3
(kBT )2

]
,

κ̂(μ,T ) = LT CMLG

[
μ2 + 7π2

5
(kBT )2

]
(B9)

γ̂ (μ,T ) = 2π2

3
CMLGμkBT .

Note again that the Wiedemann-Franz law κ = LT σ is only
approximately valid in the limit |μ| � kBT . The mobility is
now μm = (CMLG/e)(h̄v0)2.

APPENDIX C: LOW-BIAS RESISTANCE OF p-n JUNCTION:
CLASSICAL THERMAL ACTIVATION VS QUANTUM

TUNNELING

In order to understand the temperature dependence of the
conductivity in Fig. 2 at φbg � φbg,min, we discuss some
analytical results for the semiclassical conductance of a p-n
junction in BLG or MLG. The existence of a p-n junction
at location x = x0 means that μeq − ED(x0) = 0. At low
temperature we linearize ED(x) around this point, such
that μeq − ED(x) ≈ −A1(x − x0), where A1 = E′

D(x0). The
classical linear-response conductance for width W is then G =
W [

∫ ∞
−∞ ρ(x)dx]−1, where ρ(x) = {σ̂ [μeq − ED(x),T ]}−1.

1. BLG

In this case σ̂ (μ,T ) is given by Eq. (B5). Since we use
the parabolic-band approximation, the x integral diverges
logarithmically and a cutoff length Lc is needed, which should
be on the order of L. In this way, the conductance of a p-n
junction (width W ) may be approximated with

G ≈ CBLGA1W

2 ln(A1Lc/2kBT )
. (C1)

The temperature dependence has a logarithmic singularity at
T = 0. This is the behavior seen in Fig. 2(a) at φbg � φbg,min.

Clearly the semiclassical result must break down at low
enough temperature, in which case some quantum-mechanical
result taking into account Zener-Klein tunneling is needed. The
zero-temperature conductance would then remain finite. The
simplest way to approximate the crossover temperature is to
use a Wenzel-Kramers-Brillouin (WKB) approximation in a
similar fashion as done for MLG.11,37,38 Estimates of this type
show that the crossover temperature may well be on the order
of room temperature. We note that such a calculation predicts
a superlinear current I ∝ V a with a = 4/3, unlike in MLG
where a = 3/2.

2. MLG

Here σ̂ (μ,T ) is found from Eq. (B9). The p-n junction in
MLG has a conductance

G = 24kBT CMLGA1W

π3
. (C2)

The linear temperature dependence is seen in Fig. 2(c) at φbg �
φbg,min. At low temperature the p-n junctions completely
dominate the conductivity of the entire sample. However,
again, at low enough temperature this result breaks down.
WKB estimates shows that this may occur already close to
room temperature. Thus the Boltzmann calculations are only
valid in the absence of p-n junctions.

1A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and
A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

2S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, e-print
arXiv:1003.4731 (to be published).

3S. Adam, E. H. Hwang, V. M. Galitski, and S. D. Sarma, Proc. Nat.
Acad. Sci. 104, 18392 (2007).

4S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C.
Elias, J. A. Jaszczak, and A. K. Geim, Phys. Rev. Lett. 100, 016602
(2008).

5S. Adam and S. Das Sarma, Phys. Rev. B 77, 115436 (2008).
6S. Xiao, J.-H. Chen, S. Adam, E. D. Williams, and M. S. Fuhrer,
Phys. Rev. B 82, 041406 (2010).

205421-7

http://dx.doi.org/10.1103/RevModPhys.81.109
http://arXiv.org/abs/arXiv:1003.4731
http://dx.doi.org/10.1073/pnas.0704772104
http://dx.doi.org/10.1073/pnas.0704772104
http://dx.doi.org/10.1103/PhysRevLett.100.016602
http://dx.doi.org/10.1103/PhysRevLett.100.016602
http://dx.doi.org/10.1103/PhysRevB.77.115436
http://dx.doi.org/10.1103/PhysRevB.82.041406


J. K. VILJAS, A. FAY, M. WIESNER, AND P. J. HAKONEN PHYSICAL REVIEW B 83, 205421 (2011)

7S. Adam and M. D. Stiles, Phys. Rev. B 82, 075423 (2010).
8S. Das Sarma, E. H. Hwang, and E. Rossi, Phys. Rev. B 81, 161407
(2010).

9I. Meric, M. Y. Han, A. F. Young, B. Ozyilmaz, P. Kim, and K. L.
Shepard, Nature Nanotechnol. 3, 654 (2008).

10A. Barreiro, M. Lazzeri, J. Moser, F. Mauri, and A. Bachtold, Phys.
Rev. Lett. 103, 076601 (2009).

11N. Vandecasteele, A. Barreiro, M. Lazzeri, A. Bachtold, and
F. Mauri, Phys. Rev. B 82, 045416 (2010).

12B. Huard, N. Stander, J. A. Sulpizio, and D. Goldhaber-Gordon,
Phys. Rev. B 78, 121402 (2008).
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