1,397 research outputs found

    A Markov Chain Monte Carlo approach to the study of massive black hole binary systems with LISA

    Get PDF
    The Laser Interferometer Space Antenna (LISA) will produce a data stream containing a vast number of overlapping sources: from strong signals generated by the coalescence of massive black hole binary systems to much weaker radiation form sub-stellar mass compact binaries and extreme-mass ratio inspirals. It has been argued that the observation of weak signals could be hampered by the presence of loud ones and that they first need to be removed to allow such observations. Here we consider a different approach in which sources are studied simultaneously within the framework of Bayesian inference. We investigate the simplified case in which the LISA data stream contains radiation from a massive black hole binary system superimposed over a (weaker) quasi-monochromatic waveform generated by a white dwarf binary. We derive the posterior probability density function of the model parameters using an automatic Reversible Jump Markov Chain Monte Carlo algorithm (RJMCMC). We show that the information about the sources and noise are retrieved at the expected level of accuracy without the need of removing the stronger signal. Our analysis suggests that this approach is worth pursuing further and should be considered for the actual analysis of the LISA data.Comment: submitted to cqg as GWDAW-10 conference proceedings, 10 pages, 4 figures, some changes to plots and numerical detail

    LISA Response Function and Parameter Estimation

    Full text link
    We investigate the response function of LISA and consider the adequacy of its commonly used approximation in the high-frequency range of the observational band. We concentrate on monochromatic binary systems, such as white dwarf binaries. We find that above a few mHz the approxmation starts becoming increasingly inaccurate. The transfer function introduces additional amplitude and phase modulations in the measured signal that influence parameter estmation and, if not properly accounted for, lead to losses of signal-to-noise ratio.Comment: 4 pages, 2 figures, amaldi 5 conference proceeding

    MCMC Exploration of Supermassive Black Hole Binary Inspirals

    Get PDF
    The Laser Interferometer Space Antenna will be able to detect the inspiral and merger of Super Massive Black Hole Binaries (SMBHBs) anywhere in the Universe. Standard matched filtering techniques can be used to detect and characterize these systems. Markov Chain Monte Carlo (MCMC) methods are ideally suited to this and other LISA data analysis problems as they are able to efficiently handle models with large dimensions. Here we compare the posterior parameter distributions derived by an MCMC algorithm with the distributions predicted by the Fisher information matrix. We find excellent agreement for the extrinsic parameters, while the Fisher matrix slightly overestimates errors in the intrinsic parameters.Comment: Submitted to CQG as a GWDAW-10 Conference Proceedings, 9 pages, 5 figures, Published Versio

    Facing the LISA Data Analysis Challenge

    Get PDF
    By being the first observatory to survey the source rich low frequency region of the gravitational wave spectrum, the Laser Interferometer Space Antenna (LISA) will revolutionize our understanding of the Cosmos. For the first time we will be able to detect the gravitational radiation from millions of galactic binaries, the coalescence of two massive black holes, and the inspirals of compact objects into massive black holes. The signals from multiple sources in each class, and possibly others as well, will be simultaneously present in the data. To achieve the enormous scientific return possible with LISA, sophisticated data analysis techniques must be developed which can mine the complex data in an effort to isolate and characterize individual signals. This proceedings paper very briefly summarizes the challenges associated with analyzing the LISA data, the current state of affairs, and the necessary next steps to move forward in addressing the imminent challenges.Comment: 4 pages, no figures, Proceedings paper for the TeV Particle Astrophysics II conference held Aug 28-31 at the Univ. of Wisconsi

    Discrete Model of Ideological Struggle Accounting for Migration

    Full text link
    A discrete in time model of ideological competition is formulated taking into account population migration. The model is based on interactions between global populations of non-believers and followers of different ideologies. The complex dynamics of the attracting manifolds is investigated. Conversion from one ideology to another by means of (i) mass media influence and (ii) interpersonal relations is considered. Moreover a different birth rate is assumed for different ideologies, the rate being assumed to be positive for the reference population, made of initially non-believers. Ideological competition can happen in one or several regions in space. In the latter case, migration of non-believers and adepts is allowed; this leads to an enrichment of the ideological dynamics. Finally, the current ideological situation in the Arab countries and China is commented upon from the point of view of the presently developed mathematical model. The massive forced conversion by Ottoman Turks in the Balkans is briefly discussed.Comment: 24 pages, with 5 figures and 52 refs.; prepared for a Special issue of Advances in Complex System

    Detecting extreme mass ratio inspiral events in LISA data using the Hierarchical Algorithm for Clusters and Ridges (HACR)

    Get PDF
    One of the most exciting prospects for the Laser Interferometer Space Antenna (LISA) is the detection of gravitational waves from the inspirals of stellar-mass compact objects into supermassive black holes. Detection of these sources is an extremely challenging computational problem due to the large parameter space and low amplitude of the signals. However, recent work has suggested that the nearest extreme mass ratio inspiral (EMRI) events will be sufficiently loud that they might be detected using computationally cheap, template-free techniques, such as a time-frequency analysis. In this paper, we examine a particular time-frequency algorithm, the Hierarchical Algorithm for Clusters and Ridges (HACR). This algorithm searches for clusters in a power map and uses the properties of those clusters to identify signals in the data. We find that HACR applied to the raw spectrogram performs poorly, but when the data is binned during the construction of the spectrogram, the algorithm can detect typical EMRI events at distances of up to 2.6\sim2.6Gpc. This is a little further than the simple Excess Power method that has been considered previously. We discuss the HACR algorithm, including tuning for single and multiple sources, and illustrate its performance for detection of typical EMRI events, and other likely LISA sources, such as white dwarf binaries and supermassive black hole mergers. We also discuss how HACR cluster properties could be used for parameter extraction.Comment: 21 pages, 11 figures, submitted to Class. Quantum Gravity. Modified and shortened in light of referee's comments. Updated results consider tuning over all three HACR thresholds, and show 10-15% improvement in detection rat

    Effect of intragastric acid stability of fat emulsions on gastric emptying, plasma lipid profile and postpradial satiety

    Get PDF
    Fat is often included in common foods as an emulsion of dispersed oil droplets to enhance the organoleptic quality and stability. The intragastric acid stability of emulsified fat may impact on gastric emptying, satiety and plasma lipid absorption. The aim of the present study was to investigate whether, compared with an acid-unstable emulsion, an acid-stable fat emulsion would empty from the stomach more slowly, cause more rapid plasma lipid absorption and cause greater satiety. Eleven healthy male volunteers received on two separate occasions 500 ml of 15% (w/w) [13C]palmitate-enriched olive oil-in-water emulsion meals which were either stable or unstable in the acid gastric environment. MRI was used to measure gastric emptying and the intragastric oil fraction of the meals. Blood sampling was used to measure plasma lipids and visual analogue scales were used to assess satiety. The acid-unstable fat emulsion broke and rapidly layered in the stomach. Gastric emptying of meal volume was slower for the acid-stable fat emulsion (P,0·0001; two-way ANOVA). The rate of energy delivery of fat from the stomach to the duodenum was not different up to t ¼ 110 min. The acid-stable emulsion induced increased fullness (P,0·05), decreased hunger (P,0·0002), decreased appetite (P,0·0001) and increased the concentration of palmitic acid tracer in the chylomicron fraction (P,0·04). This shows that it is possible to delay gastric emptying and increase satiety by stabilising the intragastric distribution of fat emulsions against the gastric acid environment. This could have implications for the design of novel foods

    Optimal statistic for detecting gravitational wave signals from binary inspirals with LISA

    Full text link
    A binary compact object early in its inspiral phase will be picked up by its nearly monochromatic gravitational radiation by LISA. But even this innocuous appearing candidate poses interesting detection challenges. The data that will be scanned for such sources will be a set of three functions of LISA's twelve data streams obtained through time-delay interferometry, which is necessary to cancel the noise contributions from laser-frequency fluctuations and optical-bench motions to these data streams. We call these three functions pseudo-detectors. The sensitivity of any pseudo-detector to a given sky position is a function of LISA's orbital position. Moreover, at a given point in LISA's orbit, each pseudo-detector has a different sensitivity to the same sky position. In this work, we obtain the optimal statistic for detecting gravitational wave signals, such as from compact binaries early in their inspiral stage, in LISA data. We also present how the sensitivity of LISA, defined by this optimal statistic, varies as a function of sky position and LISA's orbital location. Finally, we show how a real-time search for inspiral signals can be implemented on the LISA data by constructing a bank of templates in the sky positions.Comment: 22 pages, 15 eps figures, Latex, uses iopart style/class files. Based on talk given at the 8th Gravitational Wave Data Analysis Workshop, Milwaukee, USA, December 17-20, 2003. Accepted for publication in Class. Quant. Gra

    Time-frequency analysis of extreme-mass-ratio inspiral signals in mock LISA data

    Get PDF
    Extreme-mass-ratio inspirals (EMRIs) of ~ 1-10 solar-mass compact objects into ~ million solar-mass massive black holes can serve as excellent probes of strong-field general relativity. The Laser Interferometer Space Antenna (LISA) is expected to detect gravitational wave signals from apprxomiately one hundred EMRIs per year, but the data analysis of EMRI signals poses a unique set of challenges due to their long duration and the extensive parameter space of possible signals. One possible approach is to carry out a search for EMRI tracks in the time-frequency domain. We have applied a time-frequency search to the data from the Mock LISA Data Challenge (MLDC) with promising results. Our analysis used the Hierarchical Algorithm for Clusters and Ridges to identify tracks in the time-frequency spectrogram corresponding to EMRI sources. We then estimated the EMRI source parameters from these tracks. In these proceedings, we discuss the results of this analysis of the MLDC round 1.3 data.Comment: Amaldi-7 conference proceedings; requires jpconf style file

    The Reliability of Global and Hemispheric Surface Temperature Records

    Get PDF
    The purpose of this review article is to discuss the development and associated estimation of uncertainties in the global and hemispheric surface temperature records. The review begins by detailing the groups that produce surface temperature datasets. After discussing the reasons for similarities and differences between the various products, the main issues that must be addressed when deriving accurate estimates, particularly for hemispheric and global averages, are then considered. These issues are discussed in the order of their importance for temperature records at these spatial scales: biases in SST data, particularly before the 1940s; the exposure of land-based thermometers before the development of louvred screens in the late 19th century; and urbanization effects in some regions in recent decades. The homogeneity of land-based records is also discussed; however, at these large scales it is relatively unimportant. The article concludes by illustrating hemispheric and global temperature records from the four groups that produce series in near-real time
    corecore