One of the most exciting prospects for the Laser Interferometer Space Antenna
(LISA) is the detection of gravitational waves from the inspirals of
stellar-mass compact objects into supermassive black holes. Detection of these
sources is an extremely challenging computational problem due to the large
parameter space and low amplitude of the signals. However, recent work has
suggested that the nearest extreme mass ratio inspiral (EMRI) events will be
sufficiently loud that they might be detected using computationally cheap,
template-free techniques, such as a time-frequency analysis. In this paper, we
examine a particular time-frequency algorithm, the Hierarchical Algorithm for
Clusters and Ridges (HACR). This algorithm searches for clusters in a power map
and uses the properties of those clusters to identify signals in the data. We
find that HACR applied to the raw spectrogram performs poorly, but when the
data is binned during the construction of the spectrogram, the algorithm can
detect typical EMRI events at distances of up to ∼2.6Gpc. This is a little
further than the simple Excess Power method that has been considered
previously. We discuss the HACR algorithm, including tuning for single and
multiple sources, and illustrate its performance for detection of typical EMRI
events, and other likely LISA sources, such as white dwarf binaries and
supermassive black hole mergers. We also discuss how HACR cluster properties
could be used for parameter extraction.Comment: 21 pages, 11 figures, submitted to Class. Quantum Gravity. Modified
and shortened in light of referee's comments. Updated results consider tuning
over all three HACR thresholds, and show 10-15% improvement in detection rat