340 research outputs found

    Effects of a Short-Term Neuromuscular Training Program on Jump Performance and Landing Mechanics

    Get PDF
    Please download pdf version here

    Arsenic Metabolism by Human Gut Microbiota upon in Vitro Digestion of Contaminated Soils

    Get PDF
    BACKGROUND: Speciation analysis is essential when evaluating risks from arsenic (As) exposure. In an oral exposure scenario, the importance of presystemic metabolism by gut microorganisms has been evidenced with in vivo animal models and in vitro experiments with animal microbiota. However, it is unclear whether human microbiota display similar As metabolism, especially when present in a contaminated matrix. OBJECTIVES: We evaluated the metabolic potency of in vitro cultured human colon microbiota toward inorganic As (iAs) and As-contaminated soils. METHODS: A colon microbial community was cultured in a dynamic model of the human gut. These colon microbiota were incubated with iAs and with As-contaminated urban soils. We determined As speciation analysis using high-performance liquid chromatography coupled with inductively coupled plasma mass spectrometry. RESULTS: We found a high degree of methylation for colon digests both of iAs (10 mu g methylarsenical/g biomass/hr) and of As-contaminated soils (up to 28 mu g/g biomass/hr). Besides the formation of monomethylarsonic acid (MMA(V)), we detected the highly toxic monomethylarsonous acid (MMA(III)). Moreover, this is the first description of microbial thiolation leading to monomethylmonothioarsonic acid (MMMTA(V)). MMMTA(V), the toxicokinetic properties of which are not well known, was in many cases a major metabolite. CONCLUSIONS: Presystemic As metabolism is a significant process in the human body. Toxicokinetic studies aiming to completely elucidate the As metabolic pathway would therefore benefit from incorporating the metabolic potency of human gut microbiota. This will result in more accurate risk characterization associated with As exposures

    Degeneracy: a link between evolvability, robustness and complexity in biological systems

    Get PDF
    A full accounting of biological robustness remains elusive; both in terms of the mechanisms by which robustness is achieved and the forces that have caused robustness to grow over evolutionary time. Although its importance to topics such as ecosystem services and resilience is well recognized, the broader relationship between robustness and evolution is only starting to be fully appreciated. A renewed interest in this relationship has been prompted by evidence that mutational robustness can play a positive role in the discovery of adaptive innovations (evolvability) and evidence of an intimate relationship between robustness and complexity in biology. This paper offers a new perspective on the mechanics of evolution and the origins of complexity, robustness, and evolvability. Here we explore the hypothesis that degeneracy, a partial overlap in the functioning of multi-functional components, plays a central role in the evolution and robustness of complex forms. In support of this hypothesis, we present evidence that degeneracy is a fundamental source of robustness, it is intimately tied to multi-scaled complexity, and it establishes conditions that are necessary for system evolvability

    Networked buffering: a basic mechanism for distributed robustness in complex adaptive systems

    Get PDF
    A generic mechanism - networked buffering - is proposed for the generation of robust traits in complex systems. It requires two basic conditions to be satisfied: 1) agents are versatile enough to perform more than one single functional role within a system and 2) agents are degenerate, i.e. there exists partial overlap in the functional capabilities of agents. Given these prerequisites, degenerate systems can readily produce a distributed systemic response to local perturbations. Reciprocally, excess resources related to a single function can indirectly support multiple unrelated functions within a degenerate system. In models of genome:proteome mappings for which localized decision-making and modularity of genetic functions are assumed, we verify that such distributed compensatory effects cause enhanced robustness of system traits. The conditions needed for networked buffering to occur are neither demanding nor rare, supporting the conjecture that degeneracy may fundamentally underpin distributed robustness within several biotic and abiotic systems. For instance, networked buffering offers new insights into systems engineering and planning activities that occur under high uncertainty. It may also help explain recent developments in understanding the origins of resilience within complex ecosystems. \ud \u

    Modern cities modelled as “super-cells” rather than multicellular organisms: Implications for industry, goods and services

    Get PDF
    The structure and “metabolism” (movement and conversion of goods and energy) of urban areas has caused cities to be identified as “super-organisms”, placed between ecosystems and the biosphere, in the hierarchy of living systems. Yet most such analogies are weak, and render the super-organism model ineffective for sustainable development of cities. Via a cluster analysis of 15 shared traits of the hierarchical living system, we found that industrialized cities are more similar to eukaryotic cells than to multicellular organisms; enclosed systems, such as factories and greenhouses, paralleling organelles in eukaryotic cells. We further developed a “super-cell” industrialized city model: a “eukarcity” with citynucleus (urban area) as a regulating centre, and organaras (enclosed systems, which provide the majority of goods and services) as the functional components, and cityplasm (natural ecosystems and farmlands) as the matrix. This model may improve the vitality and sustainability of cities through planning and management

    Fetal Microchimeric Cells in Blood of Women with an Autoimmune Thyroid Disease

    Get PDF
    CONTEXT: Hashimoto's thyroiditis (HT) and Graves' disease (GD), two autoimmune thyroid diseases (AITD), occur more frequently in women than in men and show an increased incidence in the years following parturition. Persisting fetal cells could play a role in the development of these diseases. OBJECTIVE: Aim of this study was to detect and characterize fetal cells in blood of postpartum women with and without an AITD. PARTICIPANTS: Eleven patients with an AITD and ten healthy volunteers, all given birth to a son maximum 5 years before analysis, and three women who never had been pregnant, were included. None of them had any other disease of the thyroid which could interfere with the results obtained. METHODS: Fluorescence in situ hybridization (FISH) and repeated FISH were used to count the number of male fetal cells. Furthermore, the fetal cells were further characterized. RESULTS: In patients with HT, 7 to 11 fetal cells per 1.000.000 maternal cells were detected, compared to 14 to 29 fetal cells in patients with GD (p=0.0061). In patients with HT, mainly fetal CD8(+) T cells were found, while in patients with GD, fetal B and CD4(+) T cells were detected. In healthy volunteers with son, 0 to 5 fetal cells were observed, which was significantly less than the number observed in patients (p<0,05). In women who never had been pregnant, no male cells were detected. CONCLUSION: This study shows a clear association between fetal microchimeric cells and autoimmune thyroid diseases

    Sex-specific regulation of chemokine Cxcl5/6 controls neutrophil recruitment and tissue injury in acute inflammatory states

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.Barts and The London Trustees Studentship (SM), Marie Curie fellowships (MB, JD), Arthritis Research UK career development fellowship (JW), William Harvey Research Foundation grant (JW/RSS), Kidney Research UK fellowship (NSAP), Barts and The London Vacation Scholarship (ISN), Wellcome Trust senior fellowship (DWG), and a Wellcome Trust career development fellowship (RSS). This work forms part of the research themes contributing to the translational research portfolio of Barts and The London Cardiovascular Biomedical Research Unit, which is supported and funded by National Institute for Health Researc

    Susceptibility to type 1 diabetes conferred by the PTPN22 C1858T polymorphism in the Spanish population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The protein tyrosine phosphatase N22 gene (<it>PTPN22</it>) encodes a lymphoid-specific phosphatase (LYP) which is an important downregulator of T cell activation. A <it>PTPN22 </it>polymorphism, C1858T, was found associated with type 1 diabetes (T1D) in different Caucasian populations. In this study, we aimed at confirming the role of this variant in T1D predisposition in the Spanish population.</p> <p>Methods</p> <p>A case-control was performed with 316 Spanish white T1D patients consecutively recruited and 554 healthy controls, all of them from the Madrid area. The <it>PTPN22 </it>C1858T SNP was genotyped in both patients and controls using a TaqMan Assay in a 7900 HT Fast Real-Time PCR System.</p> <p>Results</p> <p>We replicated for the first time in a Spanish population the association of the 1858T allele with an increased risk for developing T1D [carriers of allele T vs. CC: OR (95%) = 1.73 (1.17–2.54); p = 0.004]. Furthermore, this allele showed a significant association in female patients with diabetes onset before age 16 years [carriers of allele T vs. CC: OR (95%) = 2.95 (1.45–6.01), female patients vs female controls p = 0.0009]. No other association in specific subgroups stratified for gender, HLA susceptibility or age at onset were observed.</p> <p>Conclusion</p> <p>Our results provide evidence that the <it>PTPN22 </it>1858T allele is a T1D susceptibility factor also in the Spanish population and it might play a different role in susceptibility to T1D according to gender in early-onset T1D patients.</p
    corecore