257 research outputs found

    Characterization of the material response in the granular ratcheting

    Get PDF
    The existence of a very special ratcheting regime has recently been reported in a granular packing subjected to cyclic loading \cite{alonso04}. In this state, the system accumulates a small permanent deformation after each cycle. After a short transient regime, the value of this permanent strain accumulation becomes independent on the number of cycles. We show that a characterization of the material response in this peculiar state is possible in terms of three simple macroscopic variables. They are defined that, they can be easily measured both in the experiments and in the simulations. We have carried out a thorough investigation of the micro- and macro-mechanical factors affecting these variables, by means of Molecular Dynamics simulations of a polydisperse disk packing, as a simple model system for granular material. Biaxial test boundary conditions with a periodically cycling load were implemented. The effect on the plastic response of the confining pressure, the deviatoric stress and the number of cycles has been investigated. The stiffness of the contacts and friction has been shown to play an important role in the overall response of the system. Specially elucidating is the influence of the particular hysteretical behavior in the stress-strain space on the accumulation of permanent strain and the energy dissipation.Comment: 13 pages, 20 figures. Submitted to PR

    Comparison between a supercontinuum source and a titanium sapphire laser in achieving ultra-high resolution spectral domain optical coherence tomography (SD-OCT)

    Get PDF
    Corneal B-scan images and signal-to-noise ratio measurements using ultra-high resolution Spectral Domain Optical Coherence Tomography (SD-OCT) are reported. A comparison of results is obtained using a Ti:Sa laser and a supercontinuum optical source, is performed. Beside some differences in the SNR, the images are strikingly similar

    Direct observation of nuclear reorganization driven by ultrafast spin transitions

    No full text
    One of the most basic molecular photophysical processes is that of spin transitions and intersystem crossing between excited states surfaces. The change in spin states affects the spatial distribution of electron density through the spin orbit coupling interaction. The subsequent nuclear reorganization reports on the full extent of the spin induced change in electron distribution, which can be treated similarly to intramolecular charge transfer with effective reaction coordinates depicting the spin transition. Here, single-crystal [FeII(bpy)3] (PF6)2, a prototypical system for spin crossover (SCO) dynamics, is studied using ultrafast electron diffraction in the single-photon excitation regime. The photoinduced SCO dynamics are resolved, revealing two distinct processes with a (450 ± 20)-fs fast component and a (2.4 ± 0.4)-ps slow component. Using principal component analysis, we uncover the key structural modes, ultrafast Fe–N bond elongations coupled with ligand motions, that define the effective reaction coordinate to fully capture the relevant molecular reorganization

    Comparison between a supercontinuum source and a titanium sapphire laser in achieving ultra-high resolution spectral domain optical coherence tomography (SD-OCT)

    Get PDF
    Corneal B-scan images and signal-to-noise ratio measurements using ultra-high resolution Spectral Domain Optical Coherence Tomography (SD-OCT) are reported. A comparison of results is obtained using a Ti:Sa laser and a supercontinuum optical source, is performed. Beside some differences in the SNR, the images are strikingly similar

    The HARE chip for efficient time-resolved serial synchrotron crystallography

    No full text
    Serial synchrotron crystallography (SSX) is an emerging technique for static and time-resolved protein structure determination. Using specifically patterned silicon chips for sample delivery, the `hit-and-return' (HARE) protocol allows for efficient time-resolved data collection. The specific pattern of the crystal wells in the HARE chip provides direct access to many discrete time points. HARE chips allow for optical excitation as well as on-chip mixing for reaction initiation, making a large number of protein systems amenable to time-resolved studies. Loading of protein microcrystals onto the HARE chip is streamlined by a novel vacuum loading platform that allows fine-tuning of suction strength while maintaining a humid environment to prevent crystal dehydration. To enable the widespread use of time-resolved serial synchrotron crystallography (TR-SSX), detailed technical descriptions of a set of accessories that facilitate TR-SSX workflows are provided

    Intraligand charge transfer enables visible-light-mediated nickel-catalyzed cross-coupling reactions

    Get PDF
    We demonstrate that several visible-light mediated carbon–heteroatom cross-couplings can be carried out using a photoactive NiII precatalyst that forms in situ from a nickel salt and a bipyridine ligand decorated with two carbazole groups (Ni(Czbpy)Cl2). The activation of this precatalyst towards cross-couplings follows a hitherto undisclosed mechanism that is different from previously reported light-responsive nickel complexes that were reported to undergo metal-to-ligand charge transfer. Theoretic and spectroscopic investigations revealed that irradiation of Ni(Czbpy)Cl2 with visible-light causes an initial intraligand charge transfer event that triggers productive catalysis. Ligand polymerization affords a porous, recyclable organic polymer for heterogeneous nickel catalysis of cross-couplings. The heterogeneous catalyst shows stable performance in a packed-bed flow reactor during a week of continuous operation

    HIF1-alpha overexpression indicates a good prognosis in early stage squamous cell carcinomas of the oral floor

    Get PDF
    BACKGROUND: Hypoxia-inducible factor 1 (HIF-1) is a transcription factor, which plays a central role in biologic processes under hypoxic conditions, especially concerning tumour angiogenesis. HIF-1α is the relevant, oxygen-dependent subunit and its overexpression has been associated with a poor prognosis in a variety of malignant tumours. Therefore, HIF-1α expression in early stage oral carcinomas was evaluated in relation to established clinico-pathological features in order to determine its value as a prognostic marker. METHODS: 85 patients with histologically proven surgically treated T1/2 squamous cell carcinoma (SCC) of the oral floor were eligible for the study. Tumor specimens were investigated by means of tissue micro arrays (TMAs) and immunohistochemistry for the expression of HIF-1. Correlations between clinical features and the expression of HIF-1 were evaluated by Kaplan-Meier curves, log-rank tests and multivariate Cox regression analysis. RESULTS: HIF-1α was frequently overexpressed in a probably non-hypoxia related fashion. The expression of HIF-1α was related with a significantly improved 5-year survival rate (p < 0.01) and a significantly increased disease free period (p = 0.01) independent from nodal status and tumour size. In primary node negative T1/T2 SCC of the oral floor, absence of HIF-1α expression specified a subgroup of high-risk patients (p < 0.05). CONCLUSION: HIF-1α overexpression is an indicator of favourable prognosis in T1 and T2 SCC of the oral floor. Node negative patients lacking HIF-1α expression may therefore be considered for adjuvant radiotherapy
    • …
    corecore