7,831 research outputs found

    Tester periodically registers dc amplifier characteristics

    Get PDF
    Motor-driven switcher-recorder periodically registers the zero drift and gain drift signals of a dc amplifier subjected to changes in environment. A time coding method is used since several measurements are shared on a single recorder trace

    Sorption-induced Static Bending of Microcantilevers Coated with Viscoelastic Material

    Get PDF
    Absorption of a chemical analyte into a polymercoating results in an expansion governed by the concentration and type of analyte that has diffused into the bulk of the coating. When the coating is attached to a microcantilever, this expansion results in bending of the device. Assuming that absorption (i.e., diffusion across the surface barrier into the bulk of the coating) is Fickian, with a rate of absorption that is proportional to the difference between the absorbed concentration and the equilibrium concentration, and the coating is elastic, the bending response of the coated device should exhibit a first-order behavior. However, for polymercoatings, complex behaviors exhibiting an overshoot that slowly decays to the steady-state value have been observed. A theoretical model of absorption-induced static bending of a microcantilever coated with a viscoelastic material is presented, starting from the general stress/strain relationship for a viscoelastic material. The model accounts for viscoelasticstress relaxation and possible coating plasticization. Calculated responses show that the model is capable of reproducing the same transient behavior exhibited in the experimental data. The theory presented can also be used for extracting viscoelasticproperties of the coating from the measured bending data

    Low energy proton bidirectional anisotropies and their relation to transient interplanetary magnetic structures: ISEE-3 observations

    Get PDF
    It is known that the interplanetary medium in the period approaching solar maximum is characterized by an enhancement in the occurrence of transient solar wind streams and shocks and that such systems are often associated with looplike magnetic structures or clouds. There is observational evidence that bidirectional, field aligned flows of low energy particles could be a signature of such looplike structures, although detailed models for the magnetic field configuration and injection mechanisms do not exist at the current time. Preliminary results of a survey of low energy proton bidirectional anisotropies measured on ISEE-3 in the interplanetary medium between August 1978 and May 1982, together with magnetic field data from the same spacecraft are presented

    Retention of mouth-to-mouth, mouth-to-mask and mouth-to-face shield ventilation

    Get PDF
    Background: Retention of mouth-to-mouth, mouth-to-mask and mouth-to-face shield ventilation techniques is poorly understood.Methods: A prospective randomised clinical trial was undertaken in January 2004 in 70 candidates randomly assigned to training in mouth-to-mouth, mouth-to-mask or mouth-to-face shield ventilation. Each candidate was trained for 10 min, after which tidal volume, respiratory rate, minute volume, peak airway pressure and the presence or absence of stomach inflation were measured. 58 subjects were reassessed 1 year later and study parameters were recorded again. Data were analysed with ANOVA, \textgreekq2 and McNemar tests.Results: Tidal volume, minute volume, peak airway pressure, ventilation rate and stomach inflation rate increased significantly at reassessment with all ventilation techniques compared with the initial assessment. However, at reassessment, mean (SD) tidal volume (960 (446) vs 1008 (366) vs 1402 (302) ml; p<0.05), minute volume (12 (5) vs 13 (7) vs 18 (3) l/min; p<0.05), peak airway pressure (14 (8) vs 17 (13) vs 25 (8) cm H2O; p<0.05) and stomach inflation rate (63% vs 58% vs 100%; p<0.05) were significantly lower with mouth-to-mask and mouth-to-face shield ventilation than with mouth-to-mouth ventilation. The ventilation rate at reassessment did not differ significantly between the ventilation techniques.Conclusions: One year after a single episode of ventilation training, lay persons tended to hyperventilate; however, the degree of hyperventilation and resulting stomach inflation were lower when a mouth-to-mask or a face shield device was employed. Regular training is therefore required to retain ventilation skills; retention of skills may be better with ventilation devices

    Pre-selectable integer quantum conductance of electrochemically fabricated silver point contacts

    Get PDF
    The controlled fabrication of well-ordered atomic-scale metallic contacts is of great interest: it is expected that the experimentally observed high percentage of point contacts with a conductance at non-integer multiples of the conductance quantum G_0 = 2e^2/h in simple metals is correlated to defects resulting from the fabrication process. Here we demonstrate a combined electrochemical deposition and annealing method which allows the controlled fabrication of point contacts with pre-selectable integer quantum conductance. The resulting conductance measurements on silver point contacts are compared with tight-binding-like conductance calculations of modeled idealized junction geometries between two silver crystals with a predefined number of contact atoms

    Automated Generation of User Guidance by Combining Computation and Deduction

    Full text link
    Herewith, a fairly old concept is published for the first time and named "Lucas Interpretation". This has been implemented in a prototype, which has been proved useful in educational practice and has gained academic relevance with an emerging generation of educational mathematics assistants (EMA) based on Computer Theorem Proving (CTP). Automated Theorem Proving (ATP), i.e. deduction, is the most reliable technology used to check user input. However ATP is inherently weak in automatically generating solutions for arbitrary problems in applied mathematics. This weakness is crucial for EMAs: when ATP checks user input as incorrect and the learner gets stuck then the system should be able to suggest possible next steps. The key idea of Lucas Interpretation is to compute the steps of a calculation following a program written in a novel CTP-based programming language, i.e. computation provides the next steps. User guidance is generated by combining deduction and computation: the latter is performed by a specific language interpreter, which works like a debugger and hands over control to the learner at breakpoints, i.e. tactics generating the steps of calculation. The interpreter also builds up logical contexts providing ATP with the data required for checking user input, thus combining computation and deduction. The paper describes the concepts underlying Lucas Interpretation so that open questions can adequately be addressed, and prerequisites for further work are provided.Comment: In Proceedings THedu'11, arXiv:1202.453

    Methods for removal of unwanted signals from gravity time-series : comparison using linear techniques complemented with analysis of system dynamics

    Get PDF
    We thanks the participants of the 35th General Assembly of the European Seismological Commission for comments on preliminary results. The authors are grateful to all IGETS contributors, particularly to the station operators and to ISDC/GFZ-Potsdam for providing the original gravity data used in this study. We also thank the developers of ATLANTIDA3.1 and UTide. Part of this work was performed using the ICSMB High Performance Computing Cluster, University of Aberdeen. We also thanks M. Thiel and A. Moura for reviewing a preliminary version and making comments on the methods section and M.A. Ara´ujo for comments on Lyapunov exponents. Funding: A. Valencio is supported by CNPq, Brazil [206246/2014-5]; and received a travel grant from the School of Natural and Computing Sciences, University of Aberdeen [PO2073498], for a presentation including preliminary results.Peer reviewedPostprintPublisher PD

    Rapid Detection of Analytes with Improved Selectivity Using Coated Microcantilever Chemical Sensors and Estimation Theory

    Get PDF
    Rapid detection of analytes with improved selectivity is achieved though the use of estimation theory to analyze the response of polymer-coated microcantilever chemical sensors. In general, chemical sensors exhibit partial selectivity and can have relatively long response times. Using estimation theory, it is possible to make short-term response predictions from past data. This makes it possible to use the transient information (response time), often unique to an analyte/coating pair, to achieve an improvement in analyte species recognition while simultaneously allowing for a reduction in the time required for identification and quantification. An extended Kalman filter is used as a recursive online approach to refine the estimate of the sensor\u27s future response. Both identification and quantification are thus possible as soon as the filter estimate achieves a high confidence level. Also, with improved selectivity, identification is possible using fewer sensors in an array

    Flood plain management through allocation of land uses–a dynamic programming model

    Get PDF
    Despite heroic structural measures, flood damages continue to rise. This research develops a means for identifying more nearly optimal patterns of land use with particular reference to timing, depth, and duration of flooding. The major premise is that flood plain management is best viewed as a problem of allocating land uses to land parcels. A dynamic programming model is developed to determine what combination of downstream uses, which require flood protection, and upstream uses, which may increase runoff or provide protection through longer water retention, should be encouraged. The dynamic programming model and an associated simplified routing technique are demonstrated on a real watershed. Desirable extensions of the model are identified. One major result of the project is the realization of a need to classify watersheds by the degree of effective interdependence among land use decisions so as to determine the most appropriate types of analytical model s and public sector interventions for particular cases. Thinking about flood management as a problem of land use allocation is shown to be a fruitful conceptualization for exploring the issues, for developing models, and for identifying appropriate public sector interventions.U.S. Geological SurveyU.S. Department of the InteriorOpe
    corecore