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Abstract: 
Rapid detection of analytes with improved selectivity is achieved though the use of estimation theory to analyze 
the response of polymer-coated microcantilever chemical sensors. In general, chemical sensors exhibit partial 
selectivity and can have relatively long response times. Using estimation theory, it is possible to make short-
term response predictions from past data. This makes it possible to use the transient information (response 
time), often unique to an analyte/coating pair, to achieve an improvement in analyte species recognition while 
simultaneously allowing for a reduction in the time required for identification and quantification. An extended 
Kalman filter is used as a recursive online approach to refine the estimate of the sensor's future response. Both 
identification and quantification are thus possible as soon as the filter estimate achieves a high confidence level. 
Also, with improved selectivity, identification is possible using fewer sensors in an array. 

SECTION I. Introduction 
In general, chemical sensors exhibit partial selectivity, with a single sensor responding to many different 
chemical analytes. However, when exposed to an array of many chemical sensors, each functionalized by a 
different coating, a specific analyte will have its own unique response (a chemical fingerprint) [1], [2]. The sensor 
array technique makes it possible to distinguish a target analyte from interferents, thus greatly reducing the 
false alarm rate. However, developing coatings which maximize the array's ability to detect the target analyte is 
very time consuming and costly. Furthermore, relatively long response times of several minutes have been 
observed, especially in direct liquid-phase detection. Thus, there is a need to improve array selectivity while 
simultaneously allowing for a reduction in the time required for identification and quantification. 

Typically, in analyzing sensor arrays, only the equilibrium response of each sensor is used to identify the analyte. 
However, it has been shown that use of the sensor's transient behavior can significantly improve classification 
results [3]. Indeed, the transient behavior, which is related to the sorption processes, can be unique to an 
analyte/coating pair. 

In this work, the extended Kalman filter is applied to analyze state-space models of the bending response of 
polymer-coated microcantilever chemical sensors, taking into account relaxation and plasticization effects of the 
coating. The result is to achieve online estimation of the complete sensor response, including the transient and 
equilibrium responses, well before the steady-state is observed. The transient response information is then used 
to improve selectivity of the sensor array over using only the equilibrium response of the sensor. 

SECTION II. Theory 
A. State-Space Modeling 
In order to extract the transient information, accurate models of the sensor response are necessary. These 
models must include well-known effects of polymer coatings, such as sorption-induced elongation, coating 
plasticization, and polymer relaxation. 

When analyte interacts with the coating on the microcantilever, the analyte may undergo surface adsorption or 
bulk absorption. Absorption is common for relatively thick polymer coatings, whereas adsorption is generally 
more common in sensors coated with thin metals or bio-receptors. In the case of adsorption electrostatic and 
steric effects cause a surface stress to develop on the functionalized side of the coating resulting in cantilever 
bending. In this case, a form of Stoney's equation can be used to relate the total deflection, 𝑍𝑍𝐿𝐿, to the surface 
stress generated by adsorption [4], 

𝑍𝑍𝐿𝐿 = 3𝐿𝐿2(1−𝑣𝑣1)
𝐸𝐸1ℎ12

𝜎𝜎𝑠𝑠 , (1) 



where 𝐸𝐸1,𝑣𝑣1, and ℎ1 are the modulus, Poisson's ratio, and thickness of the substrate, respectively, and 𝐿𝐿 is the 
length of the microcantilever. The surface stress, 𝜎𝜎𝑠𝑠, is interpreted as a traction on the microcantilever having 
units of force per length (N/m). In the case of bulk absorption, expansion of the coating, which is attached to the 
substrate, causes stress to build up in the coating and thus bending of the cantilever. The deflection can be 
expressed in terms of sorption-induced elongation, Δ𝜀𝜀, (i.e. the expansion sorption would cause if the coating 
was not attached to the substrate) by the bending equation [5], 

𝑍𝑍𝐿𝐿 = 3𝐿𝐿2 �ℎ1+ℎ2
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where 𝐸𝐸2 and ℎ2 are the modulus and thickness of the coating, respectively. Note that the bending 
equation, (2), relies on the assumption that the coating is an elastic material with a modulus that does not 
change significantly during detection. 

In order to develop a state-space model the bending equation is used as the output equation combined with a 
dynamic model for the absorption process. For example, if sorption is assumed first-order then the governing 
differential equation is, 

𝐶𝐶
˙
(𝑡𝑡) = (1/𝜏𝜏𝑠𝑠)(𝐾𝐾𝑝𝑝𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡) − 𝐶𝐶(𝑡𝑡)), (3) 

where 𝐶𝐶(𝑡𝑡) is the sorbed analyte concentration, 𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡) is the ambient analyte concentration, 𝐾𝐾𝑝𝑝 is the 
partition coefficient, and 𝜏𝜏𝑠𝑠 is the sorption time constant. Here, the dot notation is used to represent the time 
derivative. Equations (2) and (3) are combined in the form of a state-space model by assuming that, for the small 
concentration ranges during detection, the sorption-induced elongation is proportional to the sorbed analyte 
concentration. In that case, the state variable for the system is the sorbed analyte concentration, 𝐶𝐶(𝑡𝑡). 

The previous model can be used to extract the transient information from sensors that exhibit a first-order 
response. However, atypical responses that do not exhibit first-order behavior have been observed in 
microcantilever sensor data [6]. In order to describe these responses more sophisticated models are necessary. 
These models must include the effects of plasticization and stress relaxation. 

Plasticization of the polymer coating upon analyte sorption is known to cause changes in the modulus of the 
coating. In most cases this effect softens the polymer, reducing the modulus; however, in rare cases the 
opposite is possible. To incorporate the effects of coating plasticization the previous model can be used by 
replacing the modulus with the concentration dependent modulus 𝐸𝐸2(𝐶𝐶(𝑡𝑡)). This causes the state-space 
equations to be nonlinear. For a small range of concentrations, the modulus can be assumed a linear function of 
the concentration, such that 

𝐸𝐸2(𝐶𝐶(𝑡𝑡)) = 𝐸𝐸2,0 + 𝛿𝛿𝐶𝐶(𝑡𝑡), (4) 

where 𝐸𝐸2,0 is the modulus before analyte sorption and 𝛿𝛿 is the change in modulus per change in sorbed analyte 
concentration. Note that for the common case of coating softening 𝛿𝛿 is negative. 

https://ieeexplore.ieee.org/document/#deqn2
https://ieeexplore.ieee.org/document/#deqn2
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Stress relaxation is a common effect of a polymer coating due to the viscoelastic properties of polymers. In a 
viscoelastic material the stress is dependent on the strain history rather than just the strain at that point in time. 
This can be described by the three-parameter solid model [7], [8], 

𝜀𝜀(𝑡𝑡) + 𝜏𝜏𝑟𝑟𝜀𝜀
˙
(𝑡𝑡) = 𝐽𝐽𝑅𝑅𝜎𝜎(𝑡𝑡) + 𝜏𝜏𝑟𝑟𝐽𝐽𝑈𝑈𝜎𝜎

˙
(𝑡𝑡), (5) 

where 𝐽𝐽𝑈𝑈 is the unrelaxed compliance, 𝐽𝐽𝑅𝑅 is the relaxed compliance, and 𝜏𝜏𝑟𝑟 is the polymer time constant given a 
constant stress. For a constant stress the strain in a viscoelastic material will increase with time (i.e. creep) and 
for a constant strain the stress will decrease with time (i.e. relaxation). This behavior is shown in Fig. 1. When 
the device is coated with a polymer, the substrate is generally much stiffer than the coating, i.e. 𝐸𝐸1 ≫ 1/𝐽𝐽𝑈𝑈 In 
this case, the relaxation effect can be incorporated into a second-order state-space model using the sorbed 
analyte concentration and the stress in the coating, 𝜎𝜎2, as the state variables and the deflection at the tip of the 
cantilever as the output. This is given by (3) and 

𝜎𝜎
˙
2(𝑡𝑡) = ( 𝜆𝜆(𝜏𝜏𝑠𝑠−𝜏𝜏𝑟𝑟)/ 𝜏𝜏𝑠𝑠𝜏𝜏𝑟𝑟𝐽𝐽𝑈𝑈)𝐶𝐶(𝑡𝑡) − (𝐽𝐽𝑅𝑅/ 𝐽𝐽𝑈𝑈𝜏𝜏𝑟𝑟)𝜎𝜎2(𝑡𝑡)

+( 𝐾𝐾𝑝𝑝𝜆𝜆/ 𝜏𝜏𝑠𝑠𝐽𝐽𝑈𝑈)𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡),

𝑍𝑍𝐿𝐿(𝑡𝑡) = (3𝐿𝐿
2ℎ2(ℎ1+ℎ2)
𝐸𝐸1ℎ13

)𝜎𝜎2(𝑡𝑡)
 (6) 

where 𝜆𝜆 is the constant of proportionality between the sorbed analyte concentration and sorption-induced 
elongation. 

B. Analysis and Signal Processing 
The Extended Kalman Filter (EKF) is a state variable estimation technique that is capable of online, real-time 
state estimation for nonlinear systems [9]. The EKF can be used for parameter estimation by first converting the 
state-space models to discrete time using any of the possible methods; the simplest of which is the Euler 
approximation that approximates a values time derivative by the difference between two time adjacent samples 
divided by the sampling time. Then the parameters must be augmented with the state-vector [10]. Note that 
this causes a linear system to become nonlinear. For this reason the EKF must be used and not the original 
Kalman filter. 

Standard curve fitting techniques require the data to be presented in batch format. The advantages that the EKF 
has over these other techniques are that the EKF can handle sequential data without the necessity of storing old 
data in memory, thus allowing data analysis to be done on simple microprocessors rather than computers. 
Moreover, the EKF can account for noise in the system, if necessary, and has the potential to be extended to 
binary and tertiary mixtures of analytes. 

 

https://ieeexplore.ieee.org/document/#deqn3
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Figure 1. The compliance (and strain) for a constant stress and the modulus (and stress) for a constant strain in 
an example viscoelastic material with 𝐽𝐽𝑈𝑈 = 10 GPa−1, 𝐽𝐽𝑅𝑅 = 25 GPa−1, and 𝜏𝜏𝑟𝑟 = 25s. 

An initial estimate of the parameters along with the uncertainty of these estimates is required for the extended 
Kalman filter. After the initial conditions are specified the EKF will update the parameters and their respective 
uncertainties with each new sample obtained. However, if the initial estimates of the parameters are not 
sufficiently close to their actual values, the EKF may converge slowly or even diverge [9]. In order to quickly 
obtain parameter estimates so that detection can be assessed early, good initial conditions are required. There 
are three ways that this can be handled. If there is sufficient a priori knowledge of the system then this 
knowledge can be used to determine parameter estimates. Otherwise, it may be desired to run multiple filters 
each with different initial conditions or to use a curve fitting technique on the first few samples in order to 
obtain these initial conditions. 

The model parameters contain the transient and steady-state information of the sensor response. Once the 
uncertainty in the parameters is sufficiently low they can be used in order to perform analyte recognition. This is 
generally possible well before the equilibrium response of the sensor has been reached. Furthermore, the 
transient information can also be unique to an analyte/coating pair. The transient information, in addition to the 
steady-state response, as estimated before reaching equilibrium, can then be used during pattern recognition 
and feature extraction. 

SECTION III. Experimental Procedure 
The extended Kalman filter technique was applied to a data set provided by Oak Ridge National Laboratory and 
published in Ref [6]. The data consisted of microcantilevers each coated with a different monomer/polymer 
layer on a functionalized gold layer. All sensors were placed in the same flow cell. Thus, all sensors were exposed 
to the same conditions. The coated microcantilevers were simultaneously exposed to nine different analytes. 
This was repeated 4 or 8 times for each analyte. The microcantilever coatings and the analytes are shown 
in Table 1. For more information concerning the coating procedures and experimental setup see Ref [6]. 

The EKF was applied to each of the responses in the data set. In order to demonstrate the selectivity of the array 
using the transient information, regularized linear discriminants analysis (RLDA) was used [11]. This allows the 
data to be projected onto a two dimensional space while still retaining most of the identification potential. RLDA 
was used because of the high dimensionality of the data and small training set. The RLDA algorithm was trained 
using four samples from each analyte. The others were saved for verification. Note that the verification set and 
the training set were collected on different days. 

SECTION IV. Results and Discussion 
For responses exhibiting typical first-order behavior the EKF was capable of obtaining good estimates for both 
the transient and steady-state parameters in about 8–10 seconds; much faster then the time required to reach 
equilibrium. Slightly longer time was usually necessary for responses exhibiting relaxation or plasticization. Fig. 
2 shows the prediction of responses (one first-order and one exhibiting relaxation) using the parameters 
estimated at 10 and 20 seconds. As more data is obtained the estimates become more accurate. 

Also depicted on Fig. 2 is the sorption time defined as the time required for the coating to absorb 63% of the 
equilibrium concentration. Fig. 2 shows the response of a CD-coated microcantilever sensor to two different 
analytes. The sorption times (as estimated by the EKF) have significantly different values for the two analytes. 
These sorption times can be as repeatable as the steady-state value. Thus, the sorption time is in many cases 
unique to an analyte/coating pair. 



The extracted sorption times, in addition to the equilibrium responses, can be used to perform analyte 
recognition. Utilizing this additional information, the number of sensors in the array can be reduced with little 
loss of the ability to perform recognition. The RLDA plots are shown in Fig. 3 (both training and test data are 
plotted). The analytes remain well clustered, and identification is still possible, when using only 3 sensors. This is 
clearly not the case if only the equilibrium response is used. It is also noted, but not shown here that when using 
only the equilibrium response, the clusters seem to drift from day to day making retraining necessary. This is not 
a problem when using the transient response. 

 
Figure 2. Estimated output obtained using an extended Kalman filter. Predictions were done using the first 10 
(20) seconds of measured data. a) detection of 2-propanol, b) detection of tricloroethylene using a CD-coated 
microcantilever sensor. Sorption times are also depicted. 

TABLE I. COATINGS AND ANALYTES USED 

Coating Abbrev. 
4-tert-Butylcalix [6]arene Cal-6 
Poly(diphenoxyphosphazene) PDPP 
Heptakis(6–0-tert-butyl dimethylsily1–2,3 di-O-acetyl)- β-CD CD 
Propanethiol treated gold BL1 
Squalane Squ 
Copper Phthalocyanine CuPc 
Propanethiol treated gold BL2 
Analyte Abbrev. 
1-Butanol BUT 
Chloroform CHLO 
Dichloromethane DCL 
Diisopropylmethylphosphonate DIMP 
Ethanol ETH 
Methanol METH 
2-Propanol IPA 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/4388307/4388308/4388343/4388343-fig-2-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/4388307/4388308/4388343/4388343-fig-2-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/4388307/4388308/4388343/4388343-fig-2-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/4388307/4388308/4388343/4388343-fig-2-source-large.gif


Trichloroethylene TCE 
Tetrachloroethylene TRCE 

 

SECTION V. Conclusion 
This work has demonstrated a technique for improving both the selectivity and analyte identification time for 
arrays of coated microcantilever chemical sensors. The extended Kalman filter was used in order to extract 
transient and steady-state sensor response information well before equilibrium is reached. 

The presented technique can be extended to any sensor platform, provided that the model is changed to fit the 
transduction principles. A greater improvement in identification time is expected in the liquid-phase, where 
sensors can take several minutes to reach equilibrium. 

 
Figure 3. Scatter plots including transient information from the sensor response. a) using the seven polymer 
coated microcantilevers b) using only three polymer coated microcantilevers. 
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