490 research outputs found

    I hear you eat and speak: automatic recognition of eating condition and food type, use-cases, and impact on ASR performance

    Get PDF
    We propose a new recognition task in the area of computational paralinguistics: automatic recognition of eating conditions in speech, i. e., whether people are eating while speaking, and what they are eating. To this end, we introduce the audio-visual iHEARu-EAT database featuring 1.6 k utterances of 30 subjects (mean age: 26.1 years, standard deviation: 2.66 years, gender balanced, German speakers), six types of food (Apple, Nectarine, Banana, Haribo Smurfs, Biscuit, and Crisps), and read as well as spontaneous speech, which is made publicly available for research purposes. We start with demonstrating that for automatic speech recognition (ASR), it pays off to know whether speakers are eating or not. We also propose automatic classification both by brute-forcing of low-level acoustic features as well as higher-level features related to intelligibility, obtained from an Automatic Speech Recogniser. Prediction of the eating condition was performed with a Support Vector Machine (SVM) classifier employed in a leave-one-speaker-out evaluation framework. Results show that the binary prediction of eating condition (i. e., eating or not eating) can be easily solved independently of the speaking condition; the obtained average recalls are all above 90%. Low-level acoustic features provide the best performance on spontaneous speech, which reaches up to 62.3% average recall for multi-way classification of the eating condition, i. e., discriminating the six types of food, as well as not eating. The early fusion of features related to intelligibility with the brute-forced acoustic feature set improves the performance on read speech, reaching a 66.4% average recall for the multi-way classification task. Analysing features and classifier errors leads to a suitable ordinal scale for eating conditions, on which automatic regression can be performed with up to 56.2% determination coefficient

    The munich LSTM-RNN approach to the MediaEval 2014 "Emotion in Music" Task

    Get PDF
    In this paper we describe TUM's approach for the MediaEval's \Emotion in Music" task. The goal of this task is to automatically estimate the emotions expressed by music (in terms of Arousal and Valence) in a time-continuous fashion. Our system consists of Long-Short Term Memory Recurrent Neural Networks (LSTM-RNN) for dynamic Arousal and Valence regression. We used two di erent sets of acoustic and psychoacoustic features that have been previously proven as e ective for emotion prediction in music and speech. The best model yielded an average Pearson's correlation coe-cient of 0.354 (Arousal) and 0.198 (Valence), and an average Root Mean Squared Error of 0.102 (Arousal) and 0.079 (Valence)

    Differential criterion of a bubble collapse in viscous liquids

    Get PDF
    The present work is devoted to a model of bubble collapse in a Newtonian viscous liquid caused by an initial bubble wall motion. The obtained bubble dynamics described by an analytic solution significantly depends on the liquid and bubble parameters. The theory gives two types of bubble behavior: collapse and viscous damping. This results in a general collapse condition proposed as the sufficient differential criterion. The suggested criterion is discussed and successfully applied to the analysis of the void and gas bubble collapses.Comment: 5 pages, 3 figure

    Incentive-based approaches to sustainable fisheries (now replaced by EEN0508)

    Get PDF
    Using examples from more than a dozen fisheries, we highlight the failures of ‘command control’ management and show that approaches that empower fishers with the incentives and the mandate to be co-custodians of the marine environment can promote sustainability. Evidence is provided that where harvesters share well-defined management responsibilities over fish, and experience both the pain of overexploitation and the gains from conservation, they are much more likely to protect fish stocks and habitat. The key insight is that to maintain marine ecosystems for present and future generations, fishing incentives must be compatible with long-term goals of sustainability.incentives, sustainability, rights, fisheries management

    Incentive-based approaches to sustainable fisheries

    Get PDF
    The failures of traditional target-species management have led many to propose an ecosystem approach to fisheries to promote sustainability. The ecosystem approach is necessary, especially to account for fishery-ecosystem interactions, but by itself is not sufficient to address two important factors contributing to unsustainable fisheries — inappropriate incentives bearing on fishers, and the ineffective governance that frequently exists in commercial, developed fisheries managed primarily by total harvest limits and input-controls. We contend that much greater emphasis must be placed on fisher motivation when managing fisheries. Using evidence from more than a dozen ‘natural experiments’ in commercial fisheries, we argue that incentive-based approaches that better specify community, individual harvest, or territorial rights and also price ecosystem services — coupled with public research, monitoring and effective oversight — promote sustainable fisheries.incentives, sustainability, rights, fisheries management

    Mechanisms for Stable Sonoluminescence

    Get PDF
    A gas bubble trapped in water by an oscillating acoustic field is expected to either shrink or grow on a diffusive timescale, depending on the forcing strength and the bubble size. At high ambient gas concentration this has long been observed in experiments. However, recent sonoluminescence experiments show that in certain circumstances when the ambient gas concentration is low the bubble can be stable for days. This paper presents mechanisms leading to stability which predict parameter dependences in agreement with the sonoluminescence experiments.Comment: 4 pages, 3 figures on request (2 as .ps files

    Spinal cord from body donors is suitable for multicolor immunofluorescence

    Get PDF
    Immunohistochemistry is a powerful tool for studying neuronal tissue from humans at the molecular level. Obtaining fresh neuronal tissue from human organ donors is difficult and sometimes impossible. In anatomical body donations, neuronal tissue is dedicated to research purposes and because of its easier availability, it may be an alternative source for research. In this study, we harvested spinal cord from a single organ donor 2 h (h) postmortem and spinal cord from body donors 24, 48, and 72 h postmortem and tested how long after death, valid multi-color immunofluorescence or horseradish peroxidase (HRP) immunohistochemistry is possible. We used general and specific neuronal markers and glial markers for immunolabeling experiments. Here we showed that it is possible to visualize molecularly different neuronal elements with high precision in the body donor spinal cord 24 h postmortem and the quality of the image data was comparable to those from the fresh organ donor spinal cord. High-contrast multicolor images of the 24-h spinal cords allowed accurate automated quantification of different neuronal elements in the same sample. Although there was antibody-specific signal reduction over postmortem intervals, the signal quality for most antibodies was acceptable at 48 h but no longer at 72 h postmortem. In conclusion, our study has defined a postmortem time window of more than 24 h during which valid immunohistochemical information can be obtained from the body donor spinal cord. Due to the easier availability, neuronal tissue from body donors is an alternative source for basic and clinical research

    Differential effects of α4ÎČ7 and GPR15 on homing of effector and regulatory T cells from patients with UC to the inflamed gut in vivo

    Get PDF
    Objective: Gut homing of lymphocytes via adhesion molecules has recently emerged as new target for therapy in inflammatory bowel diseases. We aimed to analyze the in vivo homing of effector (Teff) and regulatory (Treg) T cells to the inflamed gut via α4ÎČ7 and GPR15. Design: We assessed the expression of homing receptors on T cells in peripheral blood and inflamed mucosa. We studied the migration pattern and homing of Teff and Treg cells to the inflamed gut using intravital confocal microscopy and FACS in a humanized mouse model in DSS-treated NSG (NOD.Cg-Prkdcscid-Il2rgtm1Wjl/SzJ) mice. Results: Expression of GPR15 and α4ÎČ7 was significantly increased on Treg rather than Teff cells in peripheral blood of patients with ulcerative colitis (UC) as compared to CrohnÂŽs disease and controls. In vivo analysis in a humanized mouse model showed augmented gut homing of UC Treg cells as compared to controls. Moreover, suppression of UC (but not control) Teff and Treg cell homing was noted upon treatment with the α4ÎČ7 antibody vedolizumab. In contrast, siRNA blockade of GPR15 had only effects on homing of Teff cells but did not affect Treg homing in UC. Clinical vedolizumab treatment was associated with marked expansion of UC Treg cells in peripheral blood. Conclusion: α4ÎČ7 rather than GPR15 is crucial for increased colonic homing of UC Treg cells in vivo, while both receptors control UC Teff homing. Vedolizumab treatment impairs homing of UC Treg cells leading to their accumulation in peripheral blood with subsequent suppression of systemic effector T cell expansion

    Nature of Sonoluminescence: Noble Gas Radiation Excited by Hot Electrons in "Cold" Water

    Get PDF
    We show that strong electric fields occurring in water near the surface of collapsing gas bubbles because of the flexoelectric effect can provoke dynamic electric breakdown in a micron-size region near the bubble and consider the scenario of the SBSL. The scenario is: (i) at the last stage of incomplete collapse of the bubble the gradient of pressure in water near the bubble surface has such a value and sign that the electric field arising from the flexoelectric effect exceeds the threshold field of the dynamic electrical breakdown of water and is directed to the bubble center; (ii) mobile electrons are generated because of thermal ionization of water molecules near the bubble surface; (iii) these electrons are accelerated in ''cold'' water by the strong electric fields; (iv) these hot electrons transfer noble gas atoms dissolved in water to high-energy excited states and optical transitions between these states produce SBSL UV flashes in the trasparency window of water; (v) the breakdown can be repeated several times and the power and duration of the UV flash are determined by the multiplicity of the breakdowns. The SBSL spectrum is found to resemble a black-body spectrum where temperature is given by the effective temperature of the hot electrons. The pulse energy and some other characteristics of the SBSL are found to be in agreement with the experimental data when realistic estimations are made.Comment: 11 pages (RevTex), 1 figure (.ps
    • 

    corecore