1,150 research outputs found
COSMIC-2 Precise Orbit Determination
We present initial results for post-processed GNSS orbit and clock estimation for the FORMOSAT-7/COSMIC-2 (Constellation Observing System for Meteorology, Ionosphere, and Climate) constellation. The six COSMIC-2 satellites launched on June 25, 2019 into a 24 deg inclination, ~725 km circular orbit. The primary Tri-GNSS Radio-occultation Receiver System (TGRS) payload tracks GPS and GLONASS signals on two upward looking precise orbit determination (POD) antennas. We evaluate three GPS and GPS+GLONASS POD solutions applied at the COSMIC Data Analysis and Archive Center using the Bernese GNSS Software. The obtained results are very consistent for the six satellites. Orbit precision estimates are below the 10 cm and 0.1 mm/s 3D position and velocity requirements, respectively. A test case applying carrier phase ambiguity resolution indicates this technique may support the generation of more precise orbits in the future
Single-Receiver GPS Phase Bias Resolution
Existing software has been modified to yield the benefits of integer fixed double-differenced GPS-phased ambiguities when processing data from a single GPS receiver with no access to any other GPS receiver data. When the double-differenced combination of phase biases can be fixed reliably, a significant improvement in solution accuracy is obtained. This innovation uses a large global set of GPS receivers (40 to 80 receivers) to solve for the GPS satellite orbits and clocks (along with any other parameters). In this process, integer ambiguities are fixed and information on the ambiguity constraints is saved. For each GPS transmitter/receiver pair, the process saves the arc start and stop times, the wide-lane average value for the arc, the standard deviation of the wide lane, and the dual-frequency phase bias after bias fixing for the arc. The second step of the process uses the orbit and clock information, the bias information from the global solution, and only data from the single receiver to resolve double-differenced phase combinations. It is called "resolved" instead of "fixed" because constraints are introduced into the problem with a finite data weight to better account for possible errors. A receiver in orbit has much shorter continuous passes of data than a receiver fixed to the Earth. The method has parameters to account for this. In particular, differences in drifting wide-lane values must be handled differently. The first step of the process is automated, using two JPL software sets, Longarc and Gipsy-Oasis. The resulting orbit/clock and bias information files are posted on anonymous ftp for use by any licensed Gipsy-Oasis user. The second step is implemented in the Gipsy-Oasis executable, gd2p.pl, which automates the entire process, including fetching the information from anonymous ft
Devil's Staircase in Magnetoresistance of a Periodic Array of Scatterers
The nonlinear response to an external electric field is studied for classical
non-interacting charged particles under the influence of a uniform magnetic
field, a periodic potential, and an effective friction force. We find numerical
and analytical evidence that the ratio of transversal to longitudinal
resistance forms a Devil's staircase. The staircase is attributed to the
dynamical phenomenon of mode-locking.Comment: two-column 4 pages, 5 figure
Temperature dependent characterization of optical fibres for distributed temperature sensing in hot geothermal wells
This study was performed in order to select a proper fibre for the
application of a distributed temperature sensing system within a hot geothermal
well in Iceland. Commercially available high temperature graded index fibres
have been tested under in-situ temperature conditions. Experiments have been
performed with four different polyimide coated fibres, a fibre with an aluminum
coating and a fibre with a gold coating. To select a fibre, the relationship
between attenuation, temperature, and time has been analyzed together with SEM
micrographs. On the basis of these experiments, polyimide fibres have been
chosen for utilisation. Further tests in ambient and inert atmosphere have been
conducted with two polyimide coated fibres to set an operating temperature
limit for these fibres. SEM micrographs, together with coating colour changes
have been used to characterize the high temperature performance of the fibres.
A novel cable design has been developed, a deployment strategy has been worked
out and a suitable well for deployment has been selected.Comment: PACS: 42.81.Pa, 93.85.Fg, 47.80.Fg, 91.35.Dc, 07.20.Dt, 07.60.V
The Lyapunov spectrum is not always concave
We characterize one-dimensional compact repellers having nonconcave Lyapunov
spectra. For linear maps with two branches we give an explicit condition that
characterizes non-concave Lyapunov spectra
Visualising myocardial injury after noncardiac surgery: a case series using postoperative cardiovascular MRI.
Myocardial injury after noncardiac surgery (MINS) and perioperative myocardial injury are associated with increased morbidity and mortality. Both are diagnosed by a perioperative increase in troponin, yet there is controversy if MINS is a genuine myocardial insult. We applied postoperative cardiovascular magnetic resonance T2 mapping techniques to visualise acute myocardial injury (i.e. oedema) in six patients with multiple cardiovascular risk factors who underwent aortic surgery. The burden of myocardial oedema was substantially higher in four patients with elevated troponin qualifying for MINS, compared with patients without MINS. The data and images suggest that MINS represents genuine myocardial injury
Comparative assessment of clinical rating scales in Wilson’s disease
Background: Wilson’s disease (WD) is an autosomal recessive disorder of copper metabolism resulting in multifaceted neurological, hepatic, and psychiatric symptoms. The objective of the study was to comparatively assess two clinical rating scales for WD, the Unified Wilson’s Disease Rating Scale (UWDRS) and the Global Assessment Scale for Wilson’s disease (GAS for WD), and to test the feasibility of the patient reported part of the UWDRS neurological subscale (termed the “minimal UWDRS”). Methods: In this prospective, monocentric, cross-sectional study, 65 patients (median age 35 [range: 15–62] years; 33 female, 32 male) with treated WD were scored according to the two rating scales. Results: The UWDRS neurological subscore correlated with the GAS for WD Tier 2 score (r = 0.80; p < 0.001). Correlations of the UWDRS hepatic subscore and the GAS for WD Tier 1 score with both the Model for End Stage Liver Disease (MELD) score (r = 0.44/r = 0.28; p < 0.001/p = 0.027) and the Child-Pugh score (r = 0.32/r = 0.12; p = 0.015/p = 0.376) were weak. The “minimal UWDRS” score significantly correlated with the UWDRS total score (r = 0.86), the UWDRS neurological subscore (r = 0.89), and the GAS for WD Tier 2 score (r = 0.86). Conclusions: The UWDRS neurological and psychiatric subscales and the GAS for WD Tier 2 score are valuable tools for the clinical assessment of WD patients. The “minimal UWDRS” is a practical prescreening tool outside scientific trials
Thermodynamics of the dissipative two-state system: a Bethe Ansatz study
The thermodynamics of the dissipative two-state system is calculated exactly
for all temperatures and level asymmetries for the case of Ohmic dissipation.
We exploit the equivalence of the two-state system to the anisotropic Kondo
model and extract the thermodynamics of the former by solving the thermodynamic
Bethe Ansatz equations of the latter. The universal scaling functions for the
specific heat and static dielectric susceptibility
are extracted for all dissipation strengths for
both symmetric and asymmetric two-state systems. The logarithmic corrections to
these quantities at high temperatures are found in the Kondo limit , whereas for we find the expected power law temperature
dependences with the powers being functions of the dissipative coupling
. The low temperature behaviour is always that of a Fermi liquid.Comment: 24 pages, 32 PS figures. Typos corrected, final versio
Fluctuations of Quantum Currents and Unravelings of Master Equations
The very notion of a current fluctuation is problematic in the quantum
context. We study that problem in the context of nonequilibrium statistical
mechanics, both in a microscopic setup and in a Markovian model. Our answer is
based on a rigorous result that relates the weak coupling limit of fluctuations
of reservoir observables under a global unitary evolution with the statistics
of the so-called quantum trajectories. These quantum trajectories are
frequently considered in the context of quantum optics, but they remain useful
for more general nonequilibrium systems.
In contrast with the approaches found in the literature, we do not assume
that the system is continuously monitored. Instead, our starting point is a
relatively realistic unitary dynamics of the full system.Comment: 18 pages, v1-->v2, Replaced the former Appendix B by a (thematically)
different one. Mainly changes in the introductory Section 2+ added reference
Recommended from our members
DNA cleavage and antitumour activity of platinum(II) and copper(II) compounds derived from 4-methyl-2-N-(2-pyridylmethyl)aminophenol: spectroscopic, electrochemical and biological investigation
The reaction of the redox-active ligand, Hpyramol (4-methyl-2-N-(2-pyridylmethyl)aminophenol) with K2PtCl4 yields monofunctional square-planar [Pt(pyrimol)Cl], PtL-Cl, which was structurally characterised by single-crystal X-ray diffraction and NMR spectroscopy. This compound unexpectedly cleaves supercoiled double-stranded DNA stoichiometrically and oxidatively, in a non-specific manner without any external reductant added, under physiological conditions. Spectro-electrochemical investigations of PtL-Cl were carried out in comparison with the analogue CuL-Cl as a reference compound. The results support a phenolate oxidation, generating a phenoxyl radical responsible for the ligand-based DNA cleavage property of the title compounds. Time-dependent in vitro cytotoxicity assays were performed with both PtL-Cl and CuL-Cl in various cancer cell lines. The compound CuL-Cl overcomes cisplatin-resistance in ovarian carcinoma and mouse leukaemia cell lines, with additional activity in some other cells. The platinum analogue, PtL-Cl also inhibits cell-proliferation selectively. Additionally, cellular-uptake studies performed for both compounds in ovarian carcinoma cell lines showed that significant amounts of Pt and Cu were accumulated in the A2780 and A2780R cancer cells. The conformational and structural changes induced by PtL-Cl and CuL-Cl on calf thymus DNA and phi X174 supercoiled phage DNA at ambient conditions were followed by electrophoretic mobility assay and circular dichroism spectroscopy. The compounds induce extensive DNA degradation and unwinding, along with formation of a monoadduct at the DNA minor groove. Thus, hybrid effects of metal-centre variation, multiple DNA-binding modes and ligand-based redox activity towards cancer cell-growth inhibition have been demonstrated. Finally, reactions of PtL-Cl with DNA model bases (9-Ethylguanine and 5'-GMP) followed by NMR and MS showed slow binding at Guanine-N7 and for the double stranded self complimentary oligonucleotide d(GTCGAC)(2) in the minor groove
- …