1,015 research outputs found
The effect of thermal annealing on the properties of Al-AlOx-Al single electron tunneling transistors
The effect of thermal annealing on the properties of Al-AlOx-Al single
electron tunneling transistors is reported. After treatment of the devices by
annealing processes in forming gas atmosphere at different temperatures and for
different times, distinct and reproducible changes of their resistance and
capacitance values were found. According to the temperature regime, we observed
different behaviors as regards the resistance changes, namely the tendency to
decrease the resistance by annealing at T = 200 degree C, but to increase the
resistance by annealing at T = 400 degree C. We attribute this behavior to
changes in the aluminum oxide barriers of the tunnel junctions. The good
reproducibility of these effects with respect to the changes observed allows
the proper annealing treatment to be used for post-process tuning of tunnel
junction parameters. Also, the influence of the annealing treatment on the
noise properties of the transistors at low frequency was investigated. In no
case did the noise figures in the 1/f-regime show significant changes.Comment: 6 pages, 7 eps-figure
A stringent yeast two-hybrid matrix screening approach for protein-protein interaction discovery
The yeast two-hybrid (Y2H) system is currently one of the most important techniques for protein-protein interaction (PPI) discovery. Here, we describe a stringent three-step Y2H matrix interaction approach that is suitable for systematic PPI screening on a proteome scale. We start with the identification and elimination of autoactivating strains that would lead to false-positive signals and prevent the identification of interactions. Nonautoactivating strains are used for the primary PPI screen that is carried out in quadruplicate with arrayed preys. Interacting pairs of baits and preys are identified in a pairwise retest step. Only PPI pairs that pass the retest step are regarded as potentially biologically relevant interactions and are considered for further analysis
Single-parameter non-adiabatic quantized charge pumping
Controlled charge pumping in an AlGaAs/GaAs gated nanowire by
single-parameter modulation is studied experimentally and theoretically.
Transfer of integral multiples of the elementary charge per modulation cycle is
clearly demonstrated. A simple theoretical model shows that such a quantized
current can be generated via loading and unloading of a dynamic quasi-bound
state. It demonstrates that non-adiabatic blockade of unwanted tunnel events
can obliterate the requirement of having at least two phase-shifted periodic
signals to realize quantized pumping. The simple configuration without multiple
pumping signals might find wide application in metrological experiments and
quantum electronics.Comment: 4 pages, 4 figure
Автоматическое закорачивание отдельных фаз линий для ликвидации дуговых коротких замыканий
During the last few years high power diode laser arrays have become well established for direct material processing due to their high efficiency of more than 50%. But standard broad-area waveguide designs are susceptible to modal instabilities and filamentations resulting in low beam qualities. The beam quality increases by more than a factor of four by using tapered laser arrays, but so far they suffer from lower efficiencies. Therefore tapered lasers are mainly used today as single emitters in external resonator configurations. With increased output power and lifetime, they will be much more attractive for material processing and for pumping of fiber amplifiers. High efficiency tapered mini bars emitting at a wavelength of 980 nm are developed, and in order to qualify the bars, the characteristics of single emitters and mini bars from the same wafer have been compared. The mini bars have a width of 6 mm with 12 emitters. The ridge waveguide tapered lasers consist of a 500 µm long ridge and a 2000 µm long tapered section. The results show very similar behavior of the electro-optical characteristics and the beam quality for single emitters and bars. Due to different junction temperatures, different slope efficiencies were measured: 0.8 W/A for passively cooled mini bars and 1.0 W/A for actively cooled mini-bars and single emitters. The threshold current of 0.7 A per emitter is the same for single emitters and emitter arrays. Output powers of more than 50 W in continuous wave mode for a mini bar with standard packaging demonstrates the increased power of tapered laser bars
Формирование предпринимательских умений студентов инженерного вуза
Представлена методика формирования предпринимательских умений студентов инженерного вуза на основе практико-ориентированной подготовки, способствующей внедренческой деятельности инженера в современных условиях. Проведен анализ состояния проблемы формирования предпринимательских умений в России. Определены педагогические условия, способствующие формированию готовности студентов технического университета к комплексной инженерной деятельности. Сформулировано понятие предпринимательской компетенции инженера. Обосновано эффективное применение метода проектов для формирования предпринимательских умений студентов инженерного вуза. Представлена модель формирования предпринимательских умений студентов инженерного вуза с учетом проектной деятельности инженера.The developing methods of entrepreneurial competences of engineering students, based on the practice-oriented training to encourage an implemental activity of an engineer in the modern context has been presented in the report. The analysis of the problem of entrepreneurial competencies development in Russia has been carried out. The pedagogical conditions encouraging the commitment of the technical university students for an integrated engineering activity has been defined. The concept of entrepreneurial competencies of an engineer has been stated. An effective appliance of project methods to develop entrepreneurial competences of the engineering university students has been proved. There has been presented the development model of entrepreneurial competences of engineering students
Silicon-Organic Hybrid (SOH) and Plasmonic-Organic Hybrid (POH) integration
Silicon-organic hybrid (SOH) and plasmonic-organic hybrid (POH) integration combines organic clectro-optic materials with silicon photonic and plasmonic waveguides, The concept enables fast and power-efficient modulators that support advanced modulation formats such as QPSK and 16QAM
A new test specimen for the determination of the field of view of small-area X-ray photoelectron spectrometers
Small-area/spot photoelectron spectroscopy (SAXPS) is a powerful tool for the investigation of small surface features like microstructures of electronic devices, sensors or other functional surfaces, and so forth. For evaluating the quality of such microstructures, it is often crucial to know whether a small signal in a spectrum is an unwanted contamination of the field of view (FoV), defined by the instrument settings, or it originated from outside. To address this issue, the d80/20 parameter of a line scan across a chemical edge is often used. However, the typical d80/20 parameter does not give information on contributions from the long tails of the X-ray beam intensity distribution or the electron-optical system as defined by apertures. In the VAMAS TWA2 A22 project “Applying planar, patterned, multi-metallic samples to assess the impact of analysis area in surface-chemical analysis,” new test specimen was developed and tested. The here presented testing material consists of a silicon wafer substrate with an Au-film and embedded Cr circular and square spots with decreasing dimensions from 200 μm down to 5 μm. The spot sizes are traceable to the length unit due to size measurements with a metrological SEM. For the evaluation of the FoV, we determined the Au4f intensities measured with the center of the FoV aligned with the center of the spot and normalized to the Au4f intensity determined on the Au-film. With this test specimen, it was possible to characterize, as an example, the FoV of a Kratos AXIS Ultra DLD XPS instrument
Magnetization reversal of an individual exchange biased permalloy nanotube
We investigate the magnetization reversal mechanism in an individual
permalloy (Py) nanotube (NT) using a hybrid magnetometer consisting of a
nanometer-scale SQUID (nanoSQUID) and a cantilever torque sensor. The Py NT is
affixed to the tip of a Si cantilever and positioned in order to optimally
couple its stray flux into a Nb nanoSQUID. We are thus able to measure both the
NT's volume magnetization by dynamic cantilever magnetometry and its stray flux
using the nanoSQUID. We observe a training effect and temperature dependence in
the magnetic hysteresis, suggesting an exchange bias. We find a low blocking
temperature K, indicating the presence of a thin
antiferromagnetic native oxide, as confirmed by X-ray absorption spectroscopy
on similar samples. Furthermore, we measure changes in the shape of the
magnetic hysteresis as a function of temperature and increased training. These
observations show that the presence of a thin exchange-coupled native oxide
modifies the magnetization reversal process at low temperatures. Complementary
information obtained via cantilever and nanoSQUID magnetometry allows us to
conclude that, in the absence of exchange coupling, this reversal process is
nucleated at the NT's ends and propagates along its length as predicted by
theory.Comment: 8 pages, 4 figure
Superconducting quantum interference devices with submicron Nb/HfTi/Nb junctions for investigation of small magnetic particles
We investigated, at temperature , electric transport, flux
noise and resulting spin sensitivity of miniaturized Nb direct current
superconducting quantum interference devices (SQUIDs) based on submicron
Josephson junctions with HfTi barriers. The SQUIDs are either of the
magnetometer-type or gradiometric in layout. In the white noise regime, for the
best magnetometer we obtain a flux noise
, corresponding to a
spin sensitivity . For the
gradiometer we find
and . The devices can still be
optimized with respect to flux noise and coupling between a magnetic particle
and the SQUID, leaving room for further improvement towards single spin
resolution.Comment: 4 pages, 3 figure
Acoustically driven storage of light in a quantum well
The strong piezoelectric fields accompanying a surface acoustic wave on a
semiconductor quantum well structure are employed to dissociate optically
generated excitons and efficiently trap the created electron hole pairs in the
moving lateral potential superlattice of the sound wave. The resulting spatial
separation of the photogenerated ambipolar charges leads to an increase of the
radiative lifetime by orders of magnitude as compared to the unperturbed
excitons. External and deliberate screening of the lateral piezoelectric fields
triggers radiative recombination after very long storage times at a remote
location on the sample.Comment: 4 PostScript figures included, Physical Review Letters, in pres
- …